Features - Voltages from 6.3VDC to 500VDC+ - Available in EIA sizes from 0402 to 1812 depending on voltage rating. - Effective attenuation from 100KHz to 17GHz with various bandwidths. - · Designed to attenuate unwanted electromagnetic interference such as noise or spurious emissions at specific frequencies. - · Can be used in both single ended (one source signal) and differential (+/- signal) applications. - AEC-Q200 automotive qualification (as required) ## **Common Applications:** - · Power Bypass - FPGA / ASIC / μ-P Decoupling - · Amplifier Filter & Decoupling - DC-DC Converter Designs - · High Speed Data Filtering - DC Drives & Motors - Mil/Aero Electronics - Medical Electronics - Wireless Charging - GSM/Antennas - EMC I/O Filtering - Electric Vehicles - IT & Networking - Industrial #### **Expert Design Support:** At Johanson, we understand the complexity and difficulty associated in dealing with unwanted X2Y EMI issues in your circuit With this in mind, we have a dedicated team of X2Y EMC experts in-house who are ready to support you. Our experienced engineers are here to help solve X2Y EMI issues and can support you with: - Identifying the right component(s) to solve your unwanted X2Y EMI spikes. - · How to design-in and connect Johanson EMI Filters to your product's schematic to achieve the most effective results. - Reviewing and optimize your PCB layout, and where required, advise on any necessary changes that can be made to improve EM compliance. #### S21 Plottter Tool: Try out Johanson's S21 Plotter, an on-line tool for designers to quickly select different values or sizes and see the responses of each configuration: Visit JOHANSON Dielectrics website at: https://s21plotter.johansondielectrics.com/ # Capacitance Values & How to Order ### Capacitance Values | EMI Filte
(1 Y-Ca | | <10pF | 10pF | 22pF | 27pF | 33pF | 47pF | 100pF | 220pF | 470pF | 1000pF | 1500pF | 2200pF | 4700pF | .010µF | .015µF | .022µF | .039µF | .047µF | 0.10µF | 0.18µF | 0.22µF | 0.33µF | 0.40µF | 0.47µF | 1.0µF | |----------------------|------|-------|------|-----------------|-------------------------------------|-------------------|------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------| | Power By
(2 Y-Cap | | <20pF | 20pF | 44pF | 54pF | 66pF | 94pF | 200pF | 440pF | 940pF | 2000pF | 3000pF | 4400pF | 9400pF | .020µF | .030µF | .044µF | .078µF | .094µF | 0.20µF | 0.36µF | 0.44µF | 0.66µF | 0.80µF | 0.94µF | 2.0µF | | Power
Bypass | CAP. | XRX | 100 | 220 | 270 | 330 | 470 | 101 | 221 | 471 | 102 | 152 | 222 | 472 | 103 | 153 | 223 | 393 | 473 | 104 | 184 | 224 | 334 | 404 | 474 | 105 | | | NP0 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 0402 | X7R | | | | | | | | 50 | 50 | 50 | 50 | 50 | 50 | 16 | | | | | | | | | | | | | | NP0 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 50 | | | | | | | | | | | | | | | | | | | 0603 | X7R | | | | | | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 25 | 25 | | 16 | 10 | | 10 | | | | | | | NP0 | | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | | | | | | | | | | | | | | | | | | 0805 | X7R | | | | | | | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 50 | | 50 | 25 | | | | | | | | | NP0 | | | | | | | | | | 100 | | | | | | | | | | | | | | | | | 1206 | X7R | | | \/(| OLTAG | 3E | | | | | | | | | 100 | 100 | 100 | | 100 | 100* | | 16 | 16 | | 10 | | | 1210 | X7R | | | 6.3
10 | ATING
= 6.3 \
= 10 \ | SS
VDC
/DC | | | | | | | | | 500 | | | | | 100 | | 100 | 100 | | 25 | 16 | | 1410 | X7R | | | 25
50
100 | = 16 V
= 25 V
= 50 V
= 100 | /DC
/DC
VDC | | | | | | | | | | 500 | | | | | | | | 100 | | | | 1812 | X7R | | | 500 | = 500 | VDC | | | | | | | | | | | | 500 | | | | | | | 100 | | Automotive version currently available for those values only ### **HOW TO ORDER** | EM | CF | 500 | G | 100 | M | 1 | GF | 001 | В | |---------------------|---|---|--------------------------------------|--|---------------------------------------|----------------|--|----------------------------------|-------------------------------------| | Subfamily | Size | Voltage | DTC | Capacitance | Tol | Mark | Termination | Special
Code | Pack | | EM = EMI
Filters | CF = 0402
CP = 0603
CT = 0805
DD = 1206
DF = 1210
DK = 1410
DR = 1812 | 6R3 = 6.3 V
100 = 10 V
160 = 16 V
250 = 25 V
500 = 50 V
101 = 100 V
501 = 500 V | G = NP0/C0G
W = X7R | 1st two digits are significant; third digit denotes number of zeros. 101 = 100 pF 102 = 1000 pF | A = ±0.05pF
M = ±20% | 1 = No
Mark | GV = Ni/Sn
(RoHs)
GF = Polyterm
Sn (RoHs)
NT = Sn/Pb | 001 =
Default
catalog item | B = Bulk
E = 7" Reel
Emb Tape | Example: EMCF500G100M1GF001B EMI Filters, PME, 0402, NP0/C0G, 50.0V, 10.000pF±20%, Polyterm Sn (RoHS), Bulk ## **Mechanical & Electrical Characteristics** ### **Mechanical Characteristics** | | EIA 0402
EMCF Series | | EIA 0603
EMCP Series | | EIA 0805
EMCT Series | | EIA 1206
EMDD Series | | | 1210
Series | | 1410
Series | EIA 1812
EMDR Series | | | |----|-------------------------|---------|-------------------------|---------|-------------------------|---------|-------------------------|---------|---------|----------------|---------|----------------|-------------------------|---------|--| | | In | mm | | L | 0.045 | 1.143 | 0.064 | 1.626 | 0.080 | 2.032 | 0.124 | 3.150 | 0.125 | 3.175 | 0.140 | 0.140 | 0.174 | 4.420 | | | | ± 0.003 | ± 0.076 | ± 0.005 | ± 0.127 | ± 0.008 | ± 0.203 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.010 | ± 0.010 | ± 0.254 | | | w | 0.025 | 0.635 | 0.064 | 0.889 | 0.050 | 1.270 | 0.063 | 1.600 | 0.098 | 2.489 | 0.098 | 2.490 | 0.125 | 3.175 | | | | ± 0.003 | ± 0.076 | ± 0.005 | ± 0.127 | ± 0.008 | ± 0.203 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.254 | | | Т | 0.02 | 0.508 | 0.26 | 0.660 | 0.040 | 1.016 | 0.050 | 1.270 | 0.070 | 1.778 | 0.070 | 1.778 | 0.090 | 2.286 | | | | max. | max. | max | max. | max | max. | max. | max. | max | max | max. | max. | max | max. | | | ЕВ | 0.008 | 0.203 | 0.010 | 0.254 | 0.012 | 0.305 | 0.016 | 0.406 | 0.018 | 0.457 | 0.018 | 0.457 | 0.022 | 0.559 | | | | ± 0.003 | ± 0.076 | ± 0.006 | ± 0.152 | ± 0.008 | ± 0.203 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.254 | ± 0.010 | ± 0.254 | ± 0.012 | ± 0.305 | | | СВ | 0.012 | 0.305 | 0.018 | 0.457 | 0.022 | 0.559 | 0.040 | 1.016 | 0.045 | 1.143 | 0.045 | 1.143 | 0.045 | 1.143 | | | | ± 0.003 | ± 0.076 | ± 0.004 | ± 0.102 | ± 0.005 | ± 0.127 | ± 0.005 | ± 0.127 | ± 0.005 | ± 0.127 | ± 0.005 | ± 0.127 | ± 0.005 | ± 0.127 | | #### **Electrical Characteristics** | Туре | NP0 | X7R | | | | | | |--|---|--|--|--|--|--|--| | Temperature Coefficient | 0±30ppm/°C (-55 to +125°C) | ±15% (-55 to +125°C) | | | | | | | Dielectric Strength | Vrated ≤100VDC: DWV = 2.5 X WVDC, 25°C, 50mA max.
Vrated = 500VDC: DWV = 1.5 X WVDC, 25°C, 50mA max. | | | | | | | | Disspation Factor | 0.1% max. | WVDC ≥ 50 VDC: 2.5% max.
WVDC = 25 VDC: 3.5% max.
WVDC = 10-16 VDC: 5.0% max.
WVDC = 6.3 VDC: 10% max | | | | | | | Insulation Resistance
(Min @ 25°C WVDC) | C≤ 0.047 μ F: 1000 Ω F or 100 G Ω , whichever is less C> 0.047 μ F: 500 Ω F or 10 G Ω , whichever is less | s | | | | | | | Test Conditions | C > 100 pF; 1kHz ±50Hz; 1.0±0.2 VRMS
C ≤ 100 pF; 1Mhz ±50kHz; 1.0±0.2 VRMS | 1.0kHz±50Hz @ 1.0±0.2 Vrms | | | | | |