Surface Mount Schottky Power Rectifier Plastic SOD-123 Package ## MBR140SF, NRVB140SF, SNRVB140SF This device uses the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC-DC and DC-DC converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical. #### **Features** - Guardring for Stress Protection - Low Forward Voltage - 125°C Operating Junction Temperature - Epoxy Meets UL 94 V-0 @ 0.125 in - Package Designed for Optimal Automated Board Assembly - ESD Rating: - ♦ Human Body Model = 3B - ◆ Machine Model = C - NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **Mechanical Characteristics** - Device Marking: L4F - Polarity Designator: Cathode Band - Weight: 11.7 mg (approximately) - Case: Epoxy, Molded - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds # SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 40 VOLTS SOD-123FL CASE 498 #### **MARKING DIAGRAM** L4F = Specific Device Code M = Date Code = Pb-Free Package) (Note: Microdot may be in either location) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|------------------------|-----------------------------| | MBR140SFT1G | SOD-123FL
(Pb-Free) | 3,000 /
Tape & Reel ** | | NRVB140SFT1G | SOD-123FL
(Pb-Free) | 3,000 /
Tape & Reel ** | | MBR140SFT3G | SOD-123FL
(Pb-Free) | 10,000 /
Tape & Reel *** | | NRVB140SFT3G | SOD-123FL
(Pb-Free) | 10,000 /
Tape & Reel *** | | SNRVB140SFT1G | SOD-123FL
(Pb-Free) | 3,000 /
Tape & Reel ** | | SNRVB140SFT3G | SOD-123FL
(Pb-Free) | 10,000 /
Tape & Reel *** | ^{** 8} mm Tape, 7" Reel ^{*** 8} mm Tape, 13" Reel [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### MBR140SF, NRVB140SF, SNRVB140SF #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|---|------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _R WM
V _R | 40 | V | | Average Rectified Forward Current (At Rated V _R , T _L = 112°C) | Io | 1.0 | Α | | Peak Repetitive Forward Current
(At Rated V _R , Square Wave, 100 kHz, T _L = 95°C) | I _{FRM} | 2.0 | Α | | Non-Repetitive Peak Surge Current
(Non-Repetitive peak surge current, halfwave, single phase, 60 Hz) | I _{FSM} | 30 | Α | | Storage Temperature | T _{stg} | -55 to 150 | °C | | Operating Junction Temperature | T _J | -55 to 125 | °C | | Voltage Rate of Change (Rated V _R , T _J = 25°C) | dv/dt | 10,000 | V/μs | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |---|--|-----------------------|------| | Thermal Resistance, Junction-to-Lead (Note 1) Thermal Resistance, Junction-to-Lead (Note 2) Thermal Resistance, Junction-to-Ambient (Note 1) Thermal Resistance, Junction-to-Ambient (Note 2) | R _{tjl}
R _{tjl}
R _{tja}
R _{tja} | 26
21
325
82 | °C/W | ^{1.} Mounted with minimum recommended pad size, PC Board FR4. #### **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Va | lue | Unit | |--|----------------|-----------------------|-----------------------|------| | Maximum Instantaneous Forward Voltage (Note 3), See Figure 2 | V _F | T _J = 25°C | T _J = 85°C | V | | (I _F = 0.1 A)
(I _F = 1.0 A)
(I _F = 3.0 A) | | 0.36
0.55
0.85 | 0.30
0.515
0.88 | | | Maximum Instantaneous Reverse Current (Note 3), See Figure 4 | I _R | T _J = 25°C | T _J = 85°C | mA | | $(V_R = 40 \text{ V})$
$(V_R = 20 \text{ V})$ | | 0.5
0.15 | 25
18 | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2%. ^{2.} Mounted with 1 in. copper pad (Cu area 700 mm²). #### MBR140SF, NRVB140SF, SNRVB140SF 1.0 T_J = 125°C T_J = 25°C T_J = 25°C V_F MAXIMUM INSTANTANEOUS FORWARD VOLTAGE (VOLTS) Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current Figure 5. Current Derating **Figure 6. Forward Power Dissipation** #### MBR140SF, NRVB140SF, SNRVB140SF Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating* * Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and Pr = reverse power dissipation This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed. Figure 9. Thermal Response #### SOD-123-2 1.65x2.70x0.90 CASE 498 ISSUE E | | MILLIMETERS | | | |-----|-------------|------|------| | DIM | MIN. | N□M. | MAX. | | Α | 0.90 | 0.95 | 0.98 | | A1 | 0.00 | 0.05 | 0.10 | | A2 | 0.85 | 0.90 | 0.95 | | b | 0.70 | 0.90 | 1.10 | | U | 0.10 | 0.15 | 0.20 | | D | 1.50 | 1.65 | 1.80 | | E | 2.50 | 2.70 | 2.90 | | E1 | 1.70 | 2.10 | 2.50 | | HE | 3.40 | 3.60 | 3.80 | | L | 0.55 | 0.75 | 0.95 | | θ | 0° | | 8° | #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - 2. CONTROLLING DIMENSION: MILLIMETERS - DIMENSIONS 6 AND L ARE TO BE MEASURED ON A FLAT SECTION OF THE LEAD BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH PROTRUSIONS, OR GATE BURRS. - 5. FLAT LEAD. ## RECOMMENDED MOUNTING FOOTPRINT For additional information on our Pb-Free strategy and soldering details, please download the IDN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. ### GENERIC MARKING DIAGRAM* XXX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON11184D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|--------------------------|---|-------------| | DESCRIPTION: | SOD-123-2 1.65x2.70x0.90 |) | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales