5 KV LED EMULATOR INPUT, 4.0 A ISOLATED GATE DRIVERS #### **Features** - Pin-compatible, drop-in upgrades for popular high speed opto-coupled gate drivers - Low power diode emulator simplifies design-in process - 0.6 and 4.0 Amp peak output drive current - Rail-to-rail output voltage - Performance and reliability advantages vs. opto-drivers - · Resistant to temperature and age - 10x lower FIT rate for longer service life - 14x tighter part-to-part matching - Higher common-mode transient immunity: >50 kV/µs typical - Robust protection features - Multiple UVLO ordering options (5, 8, and 12 V) with hysteresis - 60 ns propagation delay, independent of input drive current - Wide V_{DD} range: 6.5 to 30 V - Up to 5000 V_{RMS} isolation - 10 kV surge withstand capability - AEC-Q100 qualified - Wide operating temperature range - –40 to +125 °C - RoHS-compliant packages - SOIC-8 (Narrow body) - DIP8 (Gull-wing) - SDIP6 (Stretched SO-6) - Automotive-grade OPNs available - AIAG compliant PPAP documentation support - IMDS and CAMDS listing support ## 8 VDD ANODE 7 CATHODE 6 GND 5 NC SOIC-8, DIP8 **Industry Standard Pinout** 6 VDD ANODE 5 CATHODE GND SDIP6 Industry Standard Pinout **Pin Assignments:** See page 23 Patent pending ### **Applications** - IGBT/ MOSFET gate drives - Industrial, HEV and renewable energy inverters - AC, Brushless, and DC motor controls and drives - Variable speed motor control in consumer white goods - Isolated switch mode and UPS power supplies ## **Safety Regulatory Approvals** - UL 1577 recognized - Up to 5000 Vrms for 1 minute - CSA component notice 5A approval - IEC 60950-1, 60601-1 (reinforced insulation) - VDE certification conformity - VDE0884-10 (basic/reinforced insulation) - CQC certification approval - GB4943.1 #### **Description** The Si826x isolators are pin-compatible, drop-in upgrades for popular opto-coupled gate drivers, such as 0.6 A ACPL-0302/3020, 2.5 A HCPL-3120/ACPL-3130, HCNW3120/3130, and similar opto-drivers. The devices are ideal for driving power MOSFETs and IGBTs used in a wide variety of inverter and motor control applications. The Si826x isolated gate drivers utilize Skyworks Solutions' proprietary silicon isolation technology, supporting up to 5.0 kV_{RMS} withstand voltage per UL1577 and 10kV surge protection per VDE 0884-10. This technology enables higher-performance, reduced variation with temperature and age, tighter part-to-part matching, and superior common-mode rejection compared to opto-coupled gate drivers. While the input circuit mimics the characteristics of an LED, less drive current is required, resulting in higher efficiency. Propagation delay time is independent of input drive current, resulting in consistently short propagation times, tighter unit-to-unit variation, and greater input circuit design flexibility. As a result, the Si826x series offers longer service life and dramatically higher reliability compared to opto-coupled gate drivers. Automotive Grade is available for certain part numbers. These products are built using automotive-specific flows at all steps in the manufacturing process to ensure the robustness and low defectivity required for automotive applications. # **Functional Block Diagram** # TABLE OF CONTENTS | <u>Section</u> | <u>Page</u> | |---|-------------| | 1. Electrical Specifications | | | 2. Regulatory Information | | | 3. Functional Description | | | 3.1. Theory of Operation | | | 4. Technical Description | | | 4.1. Device Behavior | | | 4.2. Device Startup | | | 4.3. Under Voltage Lockout (UVLO) | | | 5. Applications | | | 5.1. Input Circuit Design | | | 5.2. Output Circuit Design | | | 5.3. Layout Considerations | | | 5.4. Power Dissipation Considerations | | | 6. Pin Descriptions (SOIC-8, DIP8) | 22 | | 7. Pin Descriptions (SDIP6) | | | 8. Ordering Guide | | | 8.1. Automotive Grade OPNs | | | 9. Package Outline: 8-Pin Narrow Body SOIC | | | 10. Land Pattern: 8-Pin Narrow Body SOIC | | | 11. Package Outline: DIP8 | | | 12. Land Pattern: DIP8 | | | 13. Package Outline: SDIP6 | | | 14. Land Pattern: SDIP6 | | | 15. Top Markings | | | 15.1. Si826x Top Marking (Narrow Body SOIC) | | | 15.2. Top Marking Explanation | | | 15.3. Si826x Top Marking (DIP8) | | | 15.4. Top Marking Explanation | | | 15.5. Si826x Top Marking (SDIP6) | | | 15.6. Top Marking Explanation | | | Document Change List | | | Contact Information | | # 1. Electrical Specifications **Table 1. Recommended Operating Conditions** | Parameter | Symbol | Min | Тур | Max | Unit | |---------------------------------|--------------------------------------|-----|-----|-----|------| | Supply Voltage | V_{DD} | 6.5 | _ | 30 | V | | Input Current | I _{F(ON)}
(see Figure 1) | 6 | _ | 30 | mA | | Operating Temperature (Ambient) | T _A | -40 | | 125 | °C | ### Table 2. Electrical Characteristics ¹ V_{DD} = 15 V or 30 V, GND = 0 V, I_F = 6 mA, T_A = -40 to +125 °C; typical specs at 25 °C; T_J = -40 to +140 °C | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|---------------------|---|-----|------------|------------|----------| | DC Parameters | | 1 | | | | I | | Supply Voltage ² | V_{DD} | (V _{DD} – GND) | 6.5 | _ | 30 | V | | Supply Current (Output High) | I _{DD} | $I_F = 10 \text{ mA}$
$V_{DD} = 15 \text{ V}$
$V_{DD} = 30 \text{ V}$ | _ | 1.8
2.0 | 2.4
2.7 | mA
mA | | Supply Current (Output Low) | I _{DD} | $V_F = 0 \text{ V}; I_F = 0 \text{ mA}$
$V_{DD} = 15 \text{ V}$
$V_{DD} = 30 \text{ V}$ | _ | 1.5
1.7 | 2.1
2.4 | mA
mA | | Input Current Threshold | I _{F(TH)} | | | | 3.6 | mA | | Input Current Hysteresis | I _{HYS} | | _ | 0.34 | _ | mA | | Input Forward Voltage (OFF) | V _{F(OFF)} | Measured at ANODE with respect to CATHODE. | _ | _ | 1 | V | | Input Forward Voltage (ON) | V _{F(ON)} | Measured at ANODE with respect to CATHODE. | 1.6 | _ | 2.8 | V | | Input Capacitance | C _I | f = 100 kHz,
$V_F = 0 \text{ V},$
$V_F = 2 \text{ V}$ | _ | 15
15 | _ | pF | | Output Resistance High | | Si826xAxx devices | _ | 15 | _ | | | (Source) ³ | R _{OH} | Si826xBxx devices (I _{OH} = -1 A) | _ | 2.6 | 5.1 | | | Out - 4 Decister - 1 - (Cirl)3 | В | Si826xAxx devices | _ | 5 | _ | Ω | | Output Resistance Low (Sink) ³ | R _{OL} | Si826xBxx devices (I _{OL} = 2 A) | _ | 0.8 | 2.0 | | - 1. See "8.Ordering Guide" on page 24 for more information. - 2. Minimum value of (V_{DD} GND) decoupling capacitor is 1 μ F. - 3. Both $V_{\rm O}$ pins are required to be shorted together for 4.0 A compliance. - **4.** When performing this test, it is recommended that the DUT be soldered down to the PCB to reduce parasitic inductances, which may cause over-stress conditions due to excessive ringing. - 5. Guaranteed by characterization. Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev 1.51 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • October 26, 2021 ## Table 2. Electrical Characteristics (Continued)¹ V_{DD} = 15 V or 30 V, GND = 0 V, I_F = 6 mA, T_A = -40 to +125 °C; typical specs at 25 °C; T_J = -40 to +140 °C | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|--------------------|--|--------------------------|---------------------------|-----|------| | | | Si826xAxx devices ($I_F = 0$),
($t_{PW_IOH} \le 250 \text{ ns}$)
(see Figure 3) | _ | 0.4 | _ | | | Output High Current (Source) ^{3,4} | Іон | Si826xBxx devices ($I_F = 0$),
($t_{PW_IOH} \le 250 \text{ ns}$),
($V_{DD} - V_O = 7.5 \text{ V}$)
(see Figure 3) | 0.5 | 1.8 | | А | | | | Si826xAxx devices $(I_F = 10 \text{ mA}),$ $(t_{PW_IOL} \le 250 \text{ ns})$ (see Figure 2) | _ | 0.6 | _ | | | Output Low Current (Sink) ^{3,4} | I _{OL} | Si826xBxx devices $(I_F = 10 \text{ mA}),$ $(t_{PW_IOL} \le 250 \text{ ns}),$ $(V_O - \text{GND} = 4.2 \text{ V})$ (see Figure 2) | 1.2 | 4.0 | _ | Α | | | V _{OH} | Si826xAxx devices
(I _{OUT} = -100 mA) | _ | V _{DD} -
0.4 | | | | High-Level Output Voltage | | Si826xBxx devices
(I _{OUT} = -100 mA) | V _{DD} -
0.5 | V _{DD} -
0.25 | _ | V | | | | Si826xBxx devices (I $_{OUT} = 0$ mA), (I _F = 0 mA) | _ | V _{DD} | _ | | | Low Lovel Output Voltage | V | Si826xAxx devices
(I $_{OUT}$ = 100 mA),
(I _F = 10 mA) | _ | 320 | _ | mV | | Low-Level Output Voltage | V _{OL} | Si826xBxx devices
(I $_{OUT}$ = 100 mA),
(I _F = 10 mA) | _ | 80 | 200 | IIIV | | UVLO Threshold +
(Si826xxAx mode) | VDD _{UV+} | See Figure 10 on page 17.
V _{DD} rising | 5 | 5.6 | 6.3 | V | | UVLO Threshold –
(Si826xxAx mode) | VDD _{UV-} | See Figure 10 on page 17.
V _{DD} falling | 4.7 | 5.3 | 6.0 | V | - 1. See "8.Ordering Guide" on page 24 for more information. - 2. Minimum value of (V $_{DD}$ GND) decoupling capacitor is 1 $\mu F\!.$ - **3.** Both V_O pins are required to be shorted together for 4.0 A compliance. - **4.** When performing this test, it is recommended that the DUT be soldered down to the PCB to reduce parasitic inductances, which may cause over-stress conditions due to excessive ringing. - 5. Guaranteed by characterization. ### Table 2. Electrical Characteristics (Continued)¹ V_{DD} = 15 V or 30 V, GND = 0 V, I_F = 6 mA, T_A = -40 to +125 °C; typical specs at 25 °C; T_J = -40 to +140 °C | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|---------------------|---|------|------|------|-------| | UVLO lockout hysteresis (Si826xxAx mode) | VDD _{HYS} | | _ | 300 | _ | mV | | UVLO Threshold +
(Si826xxBx mode) | VDD _{UV+} | See Figure 11 on page 17.
V _{DD} rising | 7.5 | 8.4 | 9.4 | V | | UVLO Threshold –
(Si826xxBx mode) | VDD _{UV} _ | See Figure 11 on page 17.
V _{DD} falling | 6.9 | 7.9 | 8.9 | V | | UVLO lockout hysteresis
(Si826xxBx mode) | VDD _{HYS} | | _ | 500 | _ | mV | | UVLO Threshold +
(Si826xxCx mode) | VDD _{UV+} | See Figure 12 on page 17.
V _{DD} rising | 10.5 | 12 | 13.5 | V | | UVLO Threshold –
(Si826xxCx mode) | VDD _{UV-} | See Figure 12 on page 17.
V _{DD} falling | 9.4 | 10.7 | 12.2 | V | | UVLO lockout hysteresis (Si826xxCx mode) | VDD _{HYS} | | _ | 1.3 | _ | V | | AC Switching Parameters | | | | | | | | Input noise filter cut-off pulse width | t _{NFC} | | _ | _ | 15 | ns | | Minimum pulse width | t _{PMIN} | | _ | 30 | _ | ns | | Propagation delay (Low-to-High) | t _{PLH} | C _L = 200 pF | 20 | 40 | 60 | ns | | Propagation delay (High-to-Low) | t _{PHL} | C _L = 200 pF | 10 | 30 | 50 | ns | | Pulse Width Distortion | PWD | t _{PLH} – t _{PHL} | _ | 17 | 28 | ns | | Propagation Delay Difference ⁵ | PDD | t _{PHLMAX} – t _{PLHMIN} | -1 | _ | 25 | ns | | Rise time | t _R | C _L = 200 pF | _ | 5.5 | 15 | ns | | Fall time | t _F | C _L = 200 pF | _ | 8.5 | 20 | ns | | Device Startup Time | t _{START} | | _ | 16 | 30 | μs | | Common Mode
Transient Immunity | CMTI | Output = low or high $(V_{CM} = 1500 \text{ V}), (I_F \ge 6 \text{ mA})$ (See Figure 4) | 35 | 50 | _ | kV/μs | - 1. See "8.Ordering Guide" on page 24 for more information. - 2. Minimum value of (V $_{DD}$ GND) decoupling capacitor is 1 $\mu F\!.$ - 3. Both $V_{\rm O}$ pins are required to be shorted together for 4.0 A compliance. - **4.** When performing this test, it is recommended that the DUT be soldered down to the PCB to reduce parasitic inductances, which may cause over-stress conditions due to excessive ringing. - 5. Guaranteed by characterization. Figure 1. Diode Emulator Model and I-V Curve Figure 2. IOL Sink Current Test Circuit **Figure 3. IOH Source Current Test Circuit** Figure 4. Common Mode Transient Immunity Characterization Circuit Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com Rev 1.51 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • October 26, 2021 ## 2. Regulatory Information ### Table 3. Regulatory Information* #### **CSA** The Si826x is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873. 60950-1: Up to 1000 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage. 60601-1: Up to 250 V_{RMS} working voltage and 2 MOPP (Means of Patient Protection). #### **VDE** The Si826x is certified according to VDE0884-10. For more details, see certificate 40037519. VDE0884 Part 10: Up to 1414 V_{peak} for reinforced insulation working voltage. #### UL The Si826x is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 V_{RMS} isolation voltage for basic protection. #### CQC The Si826x is certified under GB4943.1-2011. For more details, see certificates CQC15001121282 and CQC15001121283. Rated up to 1000 V_{RMS} reinforced insulation working voltage; up to 1000 V_{RMS} basic insulation working voltage. *Note: Regulatory Certifications apply to 3.75 kV_{RMS} rated devices which are production tested to 4.5 kV_{RMS} for 1 sec. Regulatory Certifications apply to 5.0 kV_{RMS} rated devices which are production tested to 6.0 kV_{RMS} for 1 sec. For more information, see "8.Ordering Guide" on page 24. Table 4. Insulation and Safety-Related Specifications | Parameter | Symbol | Test Condition | Value | | | Unit | |--|-----------------|----------------|------------------|------------------|------------------|------| | Parameter | Symbol | rest Condition | SOIC-8 | DIP8 | SDIP6 | Onit | | Nominal External Air Gap (Clearance) | CLR | | 4.7 min | 7.2 min | 9.6 min | mm | | Nominal External Tracking (Creepage) | CPG | | 3.9 min | 7.0 min | 8.3 min | mm | | Minimum Internal Gap
(Internal Clearance) | DTI | | 0.016 | 0.016 | 0.016 | mm | | Tracking Resistance | CTI or
PTI | IEC60112 | 600 | 600 | 600 | V | | Erosion Depth | ED | | 0.031 | 0.031 | 0.057 | mm | | Resistance (Input-Output)* | R _{IO} | | 10 ¹² | 10 ¹² | 10 ¹² | Ω | | Capacitance (Input-Output)* | C _{IO} | f = 1 MHz | 1 | 1 | 1 | pF | *Note: To determine resistance and capacitance, the Si826x is converted into a 2-terminal device. Pins 1–4 (1–3, SDIP6) are shorted together to form the first terminal, and pins 5–8 (4–6, SDIP6) are shorted together to form the second terminal. The parameters are then measured between these two terminals. Table 5. IEC 60664-1 Ratings | Downwater | Toot Conditions | | | | |--------------------------------|--|--------|-------|-------| | Parameter | Test Conditions | SOIC-8 | DIP8 | SDIP6 | | Basic Isolation Group | Material Group | I | I | I | | | Rated Mains Voltages ≤ 150 V _{RMS} | I-IV | I-IV | I-IV | | | Rated Mains Voltages ≤ 300 V _{RMS} | I-IV | I-IV | I-IV | | Installation
Classification | Rated Mains Voltages ≤ 450 V _{RMS} | 1-111 | 1-111 | I-IV | | | Rated Mains Voltages ≤ 600 V _{RMS} | 1-111 | I-III | I-IV | | | Rated Mains Voltages ≤ 1000 V _{RMS} | I-II | I-II | 1-111 | Table 6. VDE 0884-10 Insulation Characteristics* | Parameter | Symbol | Test Condition | C | haracterist | tic | Unit | |---|-------------------|--|------------------|------------------|------------------|--------| | raiailletei | Symbol | rest Condition | SOIC-8 | DIP8 | SDIP6 | Offic | | Maximum Working
Insulation Voltage | V _{IORM} | | 630 | 891 | 1140 | V peak | | Input to Output Test
Voltage | V _{PR} | Method b1 (V _{IORM} x 1.875 = V _{PR} , 100% Production Test, t _m = 1 sec, Partial Discharge < 5 pC) | 1181 | 1671 | 2138 | V peak | | Transient Overvoltage | V _{IOTM} | t = 60 sec | 6000 | 6000 | 8000 | V peak | | Surge Voltage | V _{IOSM} | Tested per IEC 60065 with surge voltage of 1.2 μ s/50 μ s Si826x tested with magnitude 6250 V x 1.6 = 10 kV | 6250 | 6250 | 6250 | V peak | | Pollution Degree
(DIN VDE 0110, Table 1) | | | 2 | 2 | 2 | | | Insulation Resistance at T_S , $V_{IO} = 500 \text{ V}$ | R _S | | >10 ⁹ | >10 ⁹ | >10 ⁹ | Ω | *Note: This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The Si826x provides a climate classification of 40/125/21. **Table 7. IEC Safety Limiting Values*** | Parameter | Symbol | Test Condition | | Max | | Unit | |---------------------------|----------------|--|------------------|---------------|----------------|-------| | Farameter | Syllibol | rest condition | SOIC-8 | DIP8 | SDIP6 | Oilit | | Case Temperature | T _S | | 140 | 140 | 140 | °C | | Input Current | I _S | $\theta_{JA} = 110 \text{ °C/W (SOIC-8)},$
110 °C/W (DIP8),
105 °C/W (SDIP6),
$V_{F} = 2.8 \text{ V}, T_{J} = 140 \text{ °C},$
$T_{A} = 25 \text{ °C}$ | 370 | 370 | 390 | mA | | Output Power | P_S | | 1 | 1 | 1 | W | | *Note: Maximum value allo | owed in the e | event of a failure; also see the therr | nal derating cur | ve in Figures | 5, 6, 7, and 8 | | **Table 8. Thermal Characteristics** | Parameter | Symbol | Тур | | | Unit | |--|-------------------|--------|------|-------|-------| | i arameter | Symbol | SOIC-8 | DIP8 | SDIP6 | Offic | | IC Junction-to-Air Thermal
Resistance | $\theta_{\sf JA}$ | 110 | 110 | 105 | °C/W | Figure 5. (SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE0884-10 Figure 6. (DIP8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE0884-10 Figure 7. (SDIP6) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per VDE0884-10 Table 9. Absolute Maximum Ratings* | Parameter | Symbol | Min | Max | Unit | |--|---------------------|------|------|------------------| | Storage Temperature | T _{STG} | -65 | +150 | °C | | Operating Temperature | T _A | -40 | +125 | °C | | Junction Temperature | TJ | _ | +140 | °C | | Average Forward Input Current | I _{F(AVG)} | _ | 30 | mA | | Peak Transient Input Current (< 1 μs pulse width, 300 ps) | I _{FTR} | _ | 1 | А | | Reverse Input Voltage | V _R | _ | 0.3 | V | | Supply Voltage | VDD | -0.5 | 36 | V | | Output Voltage | V _{OUT} | -0.5 | 36 | V | | Peak Output Current (t_{PW} = 10 μ s, duty cycle = 0.2%) (0.6 Amp versions) | I _{OPK} | _ | 0.6 | Α | | Peak Output Current (t_{PW} = 10 μ s, duty cycle = 0.2%) (4.0 Amp versions) | I _{OPK} | _ | 4.0 | Α | | Input Power Dissipation | P _I | _ | 75 | mW | | Output Power Dissipation | Po | _ | 225 | mW | | Total Power Dissipation (all packages limited by thermal derating curve) | P _T | _ | 300 | mW | | Lead Solder Temperature (10 s) | | _ | 260 | °C | | HBM Rating ESD | | 4 | _ | kV | | Machine Model ESD | | 300 | _ | V | | CDM | | 2000 | _ | V | | Maximum Isolation Voltage (1 s) SOIC-8 | | _ | 4500 | V _{RMS} | | Maximum Isolation Voltage (1 s) DIP8 | | _ | 6500 | V _{RMS} | | Maximum Isolation Voltage (1 s) SDIP6 | | _ | 6500 | V _{RMS} | | | | • | • | • | *Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions specified in the operational sections of this data sheet. # 3. Functional Description ## 3.1. Theory of Operation The Si826x is a functional upgrade for popular opto-isolated drivers, such as the Avago HPCL-3120, HPCL-0302, Toshiba TLP350, and others. The operation of an Si826x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. The Si826x also includes a noise filter that suppresses propagation of any pulse narrower than 15 ns. A simplified block diagram for the Si826x is shown in Figure 8. Figure 8. Simplified Channel Diagram # 4. Technical Description ### 4.1. Device Behavior Truth tables for the Si826x are summarized in Table 10. Table 10. Si826x Truth Table Summary* | Input | V _{DD} | v _o | |-------|-----------------|----------------| | OFF | > UVLO | LOW | | OFF | < UVLO | LOW | | ON | > UVLO | HIGH | | ON | < UVLO | LOW | *Note: This truth table assumes VDD is powered. If VDD is below UVLO, see "4.3.Under Voltage Lockout (UVLO)" on page 17 for more information. ### 4.2. Device Startup Output V_O is held low during power-up until V_{DD} rises above the UVLO+ threshold for a minimum time period of t_{START} . Following this, the output is high when the current flowing from anode to cathode is > $I_{F(ON)}$. Device startup, normal operation, and shutdown behavior is shown in Figure 9. Figure 9. Si826x Operating Behavior ($I_F \ge I_{F(MIN)}$ when $V_F \ge V_{F(MIN)}$) ### 4.3. Under Voltage Lockout (UVLO) The UVLO circuit unconditionally drives V_O low when V_{DD} is below the lockout threshold. Referring to Figures 10 through 12, upon power up, the Si826x is maintained in UVLO until VDD rises above VDD_{UV+}. During power down, the Si826x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD \leq VDD_{UV+} – VDD_{HYS}). Figure 10. Si826xxAx UVLO Response (5 V) Figure 12. Si826xxCx UVLO Response (12 V) Figure 11. Si826xxBX UVLO Response (8 V) ### 5. Applications The following sections detail the input and output circuits necessary for proper operation. Power dissipation and layout considerations are also discussed. ### 5.1. Input Circuit Design Opto driver manufacturers typically recommend the circuits shown in Figures 13 and 14. These circuits are specifically designed to improve opto-coupler input common-mode rejection and increase noise immunity. Figure 13. Si826x Input Circuit Figure 14. High CMR Si826x Input Circuit The optically-coupled driver circuit of Figure 13 turns the LED on when the control input is high. However, internal capacitive coupling from the LED to the power and ground conductors can momentarily force the LED into its off state when the anode and cathode inputs are subjected to a high common-mode transient. The circuit shown in Figure 14 addresses this issue by using a value of R1 sufficiently low to overdrive the LED, ensuring it remains on during an input common-mode transient. Q1 shorts the LED off in the low output state, again increasing common-mode transient immunity. Some opto driver applications recommend reverse-biasing the LED when the control input is off to prevent coupled noise from energizing the LED. The Si826x input circuit requires less current and has twice the off-state noise margin compared to opto couplers. However, high CMR opto coupler designs that overdrive the LED (see Figure 14) may require increasing the value of R1 to limit input current I_F to its maximum rating when using the Si826x. In addition, there is no benefit in driving the Si826x input diode into reverse bias when in the off state. Consequently, opto coupler circuits using this technique should either leave the negative bias circuitry unpopulated or modify the circuitry (e.g., add a clamp diode or current limiting resistor) to ensure that the anode pin of the Si826x is no more than -0.3 V with respect to the cathode when reverse-biased. New designs should consider the input circuit configurations of Figure 15, which are more efficient than those of Figures 13 and 14. As shown, S1 and S2 represent any suitable switch, such as a BJT or MOSFET, analog transmission gate, processor I/O, etc. Also, note that the Si826x input can be driven from the I/O port of any MCU or FPGA capable of sourcing a minimum of 6 mA (see Figure 15C). Additionally, note that the Si826x propagation delay and output drive do not significantly change for values of I_F between I_{F(MIN)} and I_{F(MAX)}. Figure 15. Si826x Other Input Circuit Configurations ### 5.2. Output Circuit Design GND can be biased at, above, or below ground as long as the voltage on V_{DD} with respect to GND is a maximum of 30 V. V_{DD} decoupling capacitors should be placed as close to the package pins as possible. The optimum values for these capacitors depend on load current and the distance between the chip and its power source. It is recommended that 0.1 and 10 μ F bypass capacitors be used to reduce high-frequency noise and maximize performance. ### 5.3. Layout Considerations It is most important to minimize ringing in the drive path and noise on the V_{DD} lines. Care must be taken to minimize parasitic inductance in these paths by locating the Si826x as close as possible to the device it is driving. In addition, the V_{DD} supply and ground trace paths must be kept short. For this reason, the use of power and ground planes is highly recommended. A split ground plane system having separate ground and V_{DD} planes for power devices and small signal components provides the best overall noise performance. ### 5.4. Power Dissipation Considerations Proper system design must assure that the Si826x operates within safe thermal limits across the entire load range. The Si826x total power dissipation is the sum of the power dissipated by bias supply current, internal switching losses, and power delivered to the load, as shown in Equation 1. $$P_D = I_F \times V_F \times DC + V_{DD} \times [I_{DDQ} + (Q_d + C_L \times V_{DD}) \times f]$$ where: P_D is the total device power dissipation (W) I_F is the diode current (30 mA max) V_F is the diode anode to cathode voltage (2.8 V max) DC is duty cycle (0.5 typical) V_{DD} is the driver-side supply voltage (30 V max) I_{DDQ} is the driver maximum bias current (2.5 mA) Q_d is 3 nC C₁ is the load capacitance f is the switching frequency (Hz) #### Equation 1. The maximum allowable power dissipation for the Si826x is a function of the package thermal resistance, ambient temperature, and maximum allowable junction temperature, as shown in Equation 2. $$P_{Dmax} \le \frac{T_{jmax} - T_A}{\theta_{ja}}$$ where: P_{Dmax} is the maximum allowable power dissipation (W) T_{imax} is the maximum junction temperature (140 °C) T_A is the ambient temperature (°C) θ_{ia} is the package junction-to-air thermal resistance (110 °C/W) ### Equation 2. Substituting values for P_{Dmax} T_{jmax} , T_A , and θ_{ja} into Equation 2 results in a maximum allowable total power dissipation of 1.0 W. Note that the maximum allowable load is found by substituting this limit and the appropriate datasheet values from Table 2 on page 4 into Equation 1 and simplifying. Graphs are shown in Figures 16 and 18. All points along the load lines in these graphs represent the package dissipation-limited value of C_L for the corresponding switching frequency. Figure 16. (SOIC-8, DIP8, SDIP6) Maximum Load vs. Switching Frequency (25 °C) # 6. Pin Descriptions (SOIC-8, DIP8) Figure 17. Pin Configuration Table 11. Pin Descriptions (SOIC-8, DIP8) | Name | Description | |----------------|--| | NC* | No connect. | | ANODE | Anode of LED emulator. $V_{\rm O}$ follows the signal applied to this input with respect to the CATHODE input. | | CATHODE | Cathode of LED emulator. $V_{\rm O}$ follows the signal applied to ANODE with respect to this input. | | NC* | No connect. | | GND | External MOSFET source connection and ground reference for V _{DD} . This terminal is typically connected to ground but may be tied to a negative or positive voltage. | | Vo | Output signal. Both $V_{\rm O}$ pins are required to be shorted together for 4.0 A compliance. | | V _O | Output signal. Both $V_{\rm O}$ pins are required to be shorted together for 4.0 A compliance. | | V_{DD} | Output-side power supply input referenced to GND (30 V max). | | | NC* ANODE CATHODE NC* GND V _O V _O | *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. # 7. Pin Descriptions (SDIP6) Figure 18. Pin Configuration **Table 12. Pin Descriptions (SDIP6)** | Pin | Name | Description | |-----|----------------|--| | 1 | ANODE | Anode of LED emulator. $V_{\rm O}$ follows the signal applied to this input with respect to the CATHODE input. | | 2 | NC* | No connect. | | 3 | CATHODE | Cathode of LED emulator. $V_{\rm O}$ follows the signal applied to ANODE with respect to this input. | | 4 | GND | External MOSFET source connection and ground reference for V _{DD} . This terminal is typically connected to ground but may be tied to a negative or positive voltage. | | 5 | V _O | Output signal. | | 6 | V_{DD} | Output-side power supply input referenced to GND (30 V max). | *Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be connected to the ground plane. # 8. Ordering Guide Table 13. Si826x Ordering Guide 1,2,3 | New Ordering | Ordering Options | | | | | | |--------------------------------------|-------------------------|----------------------|-----------------|----------------------|----------------|----------| | New Ordering
Part Number
(OPN) | Output
Configuration | Cross
Reference | UVLO
Voltage | Insulation
Rating | Temp Range | Pkg Type | | Si8261AAC-C-IS | 0.6 A driver | HCPL-0314 | 5 V | 3.75 kVrms | -40 to +125 °C | SOIC-8 | | Si8261BAC-C-IS | 4.0 A driver | _ | 5 V | 3.75 kVrms | −40 to +125 °C | SOIC-8 | | Si8261AAC-C-IP | 0.6 A driver | HCPL-3140 | 5 V | 3.75 kVrms | −40 to +125 °C | DIP8/GW | | Si8261BAC-C-IP | 4.0 A driver | TLP 350
HCPL-3120 | 5 V | 3.75 kVrms | -40 to +125 °C | DIP8/GW | | Si8261AAD-C-IS | 0.6 A driver | ACPL-W314 | 5 V | 5.0 kVrms | -40 to +125 °C | SDIP6 | | Si8261BAD-C-IS | 4.0 A driver | TLP 700F | 5 V | 5.0 kVrms | –40 to +125 °C | SDIP6 | - 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. - 2. "Si" and "SI" are used interchangeably. - 3. AEC-Q100 qualified. Table 13. Si826x Ordering Guide^{1,2,3} | New Ordering | Ordering Options | | | | | | |----------------------|-------------------------|----------------------|-----------------|----------------------|----------------|----------| | Part Number
(OPN) | Output
Configuration | Cross
Reference | UVLO
Voltage | Insulation
Rating | Temp Range | Pkg Type | | Si8261ABC-C-IS | 0.6 A driver | HCPL-0314 | 8 V | 3.75 kVrms | −40 to +125 °C | SOIC-8 | | Si8261BBC-C-IS | 4.0 A driver | _ | 8 V | 3.75 kVrms | −40 to +125 °C | SOIC-8 | | Si8261ABC-C-IP | 0.6 A driver | HCPL-3140 | 8 V | 3.75 kVrms | −40 to +125 °C | DIP8/GW | | Si8261BBC-C-IP | 4.0 A driver | TLP 350
HCPL-3120 | 8 V | 3.75 kVrms | −40 to +125 °C | DIP8/GW | | Si8261ABD-C-IS | 0.6 A driver | ACPL-W314 | 8 V | 5.0 kVrms | –40 to +125 °C | SDIP6 | | Si8261BBD-C-IS | 4.0 A driver | TLP 700F | 8 V | 5.0 kVrms | −40 to +125 °C | SDIP6 | - 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. - 2. "Si" and "SI" are used interchangeably. - 3. AEC-Q100 qualified. Table 13. Si826x Ordering Guide^{1,2,3} | New Ordering | Ordering Options | | | | | | |----------------------|-------------------------|----------------------|-----------------|----------------------|----------------|----------| | Part Number
(OPN) | Output
Configuration | Cross
Reference | UVLO
Voltage | Insulation
Rating | Temp Range | Pkg Type | | Si8261ACC-C-IS | 0.6 A driver | HCPL-0314 | 12 V | 3.75 kVrms | -40 to +125 °C | SOIC-8 | | Si8261BCC-C-IS | 4.0 A driver | _ | 12 V | 3.75 kVrms | -40 to +125 °C | SOIC-8 | | Si8261ACC-C-IP | 0.6 A driver | HCPL-3140 | 12 V | 3.75 kVrms | -40 to +125 °C | DIP8/GW | | Si8261BCC-C-IP | 4.0 A driver | TLP 350
HCPL-3120 | 12 V | 3.75 kVrms | −40 to +125 °C | DIP8/GW | | Si8261ACD-C-IS | 0.6 A driver | ACPL-W314 | 12 V | 5.0 kVrms | -40 to +125 °C | SDIP6 | | Si8261BCD-C-IS | 4.0 A driver | TLP 700F | 12 V | 5.0 kVrms | −40 to +125 °C | SDIP6 | - 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. - 2. "Si" and "SI" are used interchangeably. - 3. AEC-Q100 qualified. #### 8.1. Automotive Grade OPNs Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and feature International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compliant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass production steps. Table 14. Si826x Ordering Guide^{1,2,3} | New Ordering | Ordering Options | | | | | | |----------------------|-------------------------|----------------------|-----------------|----------------------|----------------|----------| | Part Number
(OPN) | Output
Configuration | Cross
Reference | UVLO
Voltage | Insulation
Rating | Temp Range | Pkg Type | | Si8261BBC-AP | 4.0 A driver | TLP 350
HCPL-3120 | 8 V | 3.75 kVrms | −40 to +125 °C | DIP8/GW | | Si8261BBC-AS | 4.0 A driver | _ | 8 V | 3.75 kVrms | −40 to +125 °C | SOIC-8 | | Si8261BCC-AS | 4.0 A driver | _ | 12 V | 3.75 kVrms | −40 to +125 °C | SOIC-8 | | Si8261BCD-AS | 4.0 A driver | TLP 700F | 12 V | 5.0 kVrms | −40 to +125 °C | SDIP6 | - 1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. - 2. "Si" and "SI" are used interchangeably. - 3. AEC-Q100 qualified - **4.** An "R" at the end of the part number denotes tape and reel packaging option. - **5.** Automotive-Grade devices (with an "-A" suffix) are identical in construction materials, topside marking, and electrical parameters to their Industrial-Grade (with a "-I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is included on shipping labels. - **6.** Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Skyworks Solutions sales representative for further information. - 7. In Chapter 15.Top Markings on page 35, the Manufacturing Code represented by either "RTTTTT" or "TTTTTT" contains as its first character a letter in the range N through Z to indicate Automotive-Grade. # 9. Package Outline: 8-Pin Narrow Body SOIC Figure 19 illustrates the package details for the Si826x in an 8-pin narrow-body SOIC package. Table 15 lists the values for the dimensions shown in the illustration. Figure 19. 8-Pin Narrow Body SOIC Package Table 15. 8-Pin Narrow Body SOIC Package Diagram Dimensions | Symbol | Millim | neters | | |--------|----------|----------|--| | Symbol | Min | Max | | | А | 1.35 | 1.75 | | | A1 | 0.10 | 0.25 | | | A2 | 1.40 REF | 1.55 REF | | | В | 0.33 | 0.51 | | | С | 0.19 | 0.25 | | | D | 4.80 | 5.00 | | | E | 3.80 | 4.00 | | | е | 1.27 BSC | | | | Н | 5.80 | 6.20 | | | h | 0.25 | 0.50 | | | L | 0.40 | 1.27 | | | œ | 0° | 8° | | # 10. Land Pattern: 8-Pin Narrow Body SOIC Figure 20 illustrates the recommended land pattern details for the Si826x in an 8-pin narrow-body SOIC. Table 16 lists the values for the dimensions shown in the illustration. Figure 20. 8-Pin Narrow Body SOIC Land Pattern **Table 16. 8-Pin Narrow Body SOIC Land Pattern Dimensions** | Dimension | Feature | (mm) | |-----------|--------------------|------| | C1 | Pad Column Spacing | 5.40 | | E | Pad Row Pitch | 1.27 | | X1 | Pad Width | 0.60 | | Y1 | Pad Length | 1.55 | - **1.** This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). - 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. # 11. Package Outline: DIP8 Figure 21 illustrates the package details for the Si826x in a DIP8 package. Table 17 lists the values for the dimensions shown in the illustration. Figure 21. DIP8 Package **Table 17. DIP8 Package Diagram Dimensions** | Dimension | Min | Max | |-----------|--------|------| | А | _ | 4.19 | | A1 | 0.55 | 0.75 | | A2 | 3.17 | 3.43 | | b | 0.35 | 0.55 | | b2 | 1.14 | 1.78 | | b3 | 0.76 | 1.14 | | С | 0.20 | 0.33 | | D | 9.40 | 9.90 | | Е | 7.37 | 7.87 | | E1 | 6.10 | 6.60 | | E2 | 9.40 | 9.90 | | е | 2.54 E | BSC. | | L | 0.38 | 0.89 | | aaa | _ | 0.25 | | NI. 4 | | | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. ## 12. Land Pattern: DIP8 Figure 22 illustrates the recommended land pattern details for the Si826x in a DIP8 package. Table 18 lists the values for the dimensions shown in the illustration. Figure 22. DIP8 Land Pattern Table 18. DIP8 Land Pattern Dimensions* | Dimension | Min | Max | | |-----------|----------|------|--| | С | 8.85 | 8.90 | | | E | 2.54 BSC | | | | X | 0.60 | 0.65 | | | Y | 1.65 | 1.70 | | | Y | | 1.70 | | *Note: This Land Pattern Design is based on the IPC-7351 specification. # 13. Package Outline: SDIP6 Figure 23 illustrates the package details for the Si826x in an SDIP6 package. Table 19 lists the values for the dimensions shown in the illustration. Figure 23. SDIP6 Package Table 19. SDIP6 Package Diagram Dimensions | Dimension | Min | Max | | |-----------|-----------|------|--| | Α | _ | 2.65 | | | A1 | 0.10 | 0.30 | | | A2 | 2.05 | _ | | | b | 0.31 | 0.51 | | | С | 0.20 | 0.33 | | | D | 4.58 [| BSC | | | E | 11.50 BSC | | | | E1 | 7.50 BSC | | | | е | 1.27 [| BSC | | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. Table 19. SDIP6 Package Diagram Dimensions (Continued) | Min | Max | |------|--------------| | 0.40 | 1.27 | | 0.25 | 0.75 | | 0° | 8° | | _ | 0.10 | | _ | 0.33 | | _ | 0.10 | | _ | 0.25 | | _ | 0.10 | | _ | 0.20 | | | 0.40
0.25 | - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. # 14. Land Pattern: SDIP6 Figure 24 illustrates the recommended land pattern details for the Si826x in an SDIP6 package. Table 20 lists the values for the dimensions shown in the illustration. Figure 24. SDIP6 Land Pattern Table 20. SDIP6 Land Pattern Dimensions* | Dimension | Min | Max | | |---|-------|-------|--| | С | 10.45 | 10.50 | | | E | 1.27 | BSC | | | X | 0.55 | 0.60 | | | Y | 2.00 | 2.05 | | | *Note: This Land Pattern Design is based on the IPC-7351 specification. | | | | # 15. Top Markings # 15.1. Si826x Top Marking (Narrow Body SOIC) # 15.2. Top Marking Explanation | Line 1 Marking: | Customer Part Number | 826 = ISOdriver product series C = Input configuration 1 = Opto input type I = Peak output current A = 0.6 A; B = 4.0 A U = UVLO level A = 5 V; B = 8 V; C = 12 V V = Isolation rating C = 3.75 kV; D = 5.0 kV | |-----------------|---|--| | Line 2 Marking: | RTTTTT = Mfg Code | Manufacturing Code from the Assembly Purchase Order form. "R" indicates revision. | | Line 3 Marking: | Circle = 43 mils Diameter
Left-Justified | "e4" Pb-Free Symbol | | | YY = Year
WW = Work Week | Assigned by the Assembly House. Corresponds to the year and work week of the mold date. | # 15.3. Si826x Top Marking (DIP8) # 15.4. Top Marking Explanation | Line 1 Marking: | Customer Part Number | Si826 = ISOdriver product series C = Input configuration 1 = Opto input type I = Peak output current A = 0.6 A; B = 4.0 A U = UVLO level A = 5 V; B = 8 V; C = 12 V V = Isolation rating C = 3.75 kV; D = 5.0 kV | | |-----------------|---|--|--| | Line 2 Marking: | YY = Year
WW = Work Week | Assigned by the Assembly House. Corresponds to the year and work week of the mold date. | | | | RTTTTT = Mfg Code | Manufacturing Code from the Assembly Purchase Order form. "R" indicates revision. | | | Line 3 Marking: | Circle = 51 mils Diameter
Center-Justified | "e4" Pb-Free Symbol | | | | CO = Country of Origin | Country of Origin ISO Code Abbreviation | | # 15.5. Si826x Top Marking (SDIP6) # 15.6. Top Marking Explanation | Line 1 Marking: | Device | Si826 = ISOdriver product series C = Input configuration 1 = Opto input type | | |-----------------|-----------------------------|---|--| | Line 2 Marking: | Device Rating | I = Peak output current A = 0.6 A; B = 4.0 A U = UVLO level A = 5 V; B = 8 V; C = 12 V V = Isolation rating C = 3.75 kV; D = 5.0 kV | | | Line 3 Marking: | RTTTTT = Mfg Code | Manufacturing Code from the Assembly Purchase Order form. "R" indicates revision. | | | Line 4 Marking: | YY = Year
WW = Work Week | Assigned by the Assembly House. Corresponds to the year and work week of the mold date. | | ## **DOCUMENT CHANGE LIST** #### Revision 0.9 to Revision 1.0 - Updated Table 2 on page 4. - Added Figure 1 on page 7. - Updated "3.1.Theory of Operation" on page 15. - Updated Figures 10, 11, and 12 on page 17. - Removed "5.5. Parametric Differences between Si826x and HCPL-0302 and HCPL-3120 Opto Drivers". #### Revision 1.0 to Revision 1.1 - Updated Figure 1 on page 7. - Updated Ordering Guide Table 13 on page 24. - Removed references to moisture sensitivity levels from table note. #### Revision 1.1 to Revision 1.2 ■ Removed "Sampling" from Ordering Guide Table 13 on page 24. ### **Revision 1.2 to Revision 1.3** - Updated Table 3 on page 9. - · Added CQC certificate numbers. - Updated Table 5 on page 10. - Updated Rated Mains Voltage for 1000 V_{RMS} ratings. - Updated Table 6 on page 10. - Removed V_{IOSM} specification. - Updated Table 9 on page 14. - Replaced I_O with Peak Output Current I_{OPK}. - Updated Figure 13 on page 18. - Updated Figure 14 on page 18. - Updated Figure 15 on page 19. - Changed V_{DD} minimum throughout document to reflect 6.5 V, not 5 V, as normal operation. #### Revision 1.3 to Revision 1.4 - Removed references to LGA8 throughout. - Deleted all IEC 60747-5 and IEC 61010 references throughout and added VDE 0884-10 references throughout. - Updated all certification body's certificate and file reference numbers throughout. #### **Revision 1.4 to Revision 1.5** Added Automotive-grade Ordering Guide and other introductory information. ### **Revision 1.5 to Revision 1.51** - Added Automotive-grade Ordering Guide - Si8261BBC-AP - Si8261BCC-AS - Si8261BCD-AS www.skyworksinc.com/quality **Support & Resources** www.skyworksinc.com/support ### Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved. Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes. No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale. THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale. Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters. Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.