SFH 4857 E7800 #### **TO18** Infrared Emitter (850 nm) # **Applications** Industrial Automation (Machine controls, Light barriers, Vision controls) #### Features: - Package: hermetically sealed - ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) - Wavelength 850nm - Short switching times - Spectral match with silicon photodetectors - Measured with a 2mm aperture. # **Ordering Information** | Туре | Radiant intensity 1) | Radiant intensity 1) typ. | Ordering Code | |----------------|---|---|---------------| | | $I_F = 100 \text{ mA}; t_p = 20 \text{ ms}$ | $I_F = 100 \text{ mA}; t_p = 20 \text{ ms}$ | | | | e | -e | | | SFH 4857 E7800 | 6.3 32.0 mW/sr | 15 mW/sr | Q65111A6126 | | Maximum | Ratings | |----------------|---------| | IVIAAIIIIUIII | Naunys | | $T_{\Lambda} = 25 ^{\circ}$ |) | |------------------------------|---| |------------------------------|---| | Parameter | Symbol | | Values | |---|------------------|--------------|------------------| | Operating temperature | T _{op} | min.
max. | -40 °C
125 °C | | Storage temperature | T_{stg} | min.
max. | -40 °C
125 °C | | Reverse voltage 2) | V_R | max. | 12 V | | Forward current | I _F | max. | 100 mA | | Surge current
$t_p \le 200 \mu s; D = 0$ | I _{FSM} | max. | 1 A | | Power consumption | P _{tot} | max. | 200 mW | | ESD withstand voltage acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2) | V_{ESD} | max. | 2 kV | # **Characteristics** $I_{_{\rm F}}$ = 100 mA; $t_{_{ m p}}$ = 20 ms; $T_{_{ m A}}$ = 25 °C | Parameter | Symbol | | Values | |---|----------------------------|--------------|----------------------| | Peak wavelength | λ_{peak} | typ. | 860 nm | | Centroid wavelength | $\lambda_{ ext{centroid}}$ | typ. | 850 nm | | Spectral bandwidth at 50% I _{rel,max} | Δλ | typ. | 30 nm | | Half angle | φ | typ. | 37 ° | | Dimensions of active chip area | LxW | typ. | 0.3 x 0.3
mm x mm | | Distance chip surface to lens top | Н | min.
max. | 2.1 mm
2.7 mm | | Rise time (10% / 90%) $I_F = 100 \text{ mA}; R_L = 50 \Omega$ | t _r | typ. | 12 ns | | Fall time (10% / 90%) $I_F = 100 \text{ mA}; R_L = 50 \Omega$ | t _f | typ. | 12 ns | | Forward voltage | V_{F} | typ.
max. | 1.7 V
2 V | | Forward voltage $I_F = 1 \text{ A}$; $t_p = 100 \mu\text{s}$ | V_{F} | typ.
max. | 3.6 V
4.6 V | | Reverse current ²⁾ V _R = 5 V | I _R | max.
typ. | 10 μA
0.01 μA | | Total radiant flux 3) | Фе | typ. | 35 mW | | Radiant intensity ¹⁾ $I_F = 1 \text{ A}; t_p = 100 \mu\text{s}$ | l _e | typ. | 60 mW/sr | | Temperature coefficient of brightness | TC _I | typ. | -0.3 % / K | | Temperature coefficient of voltage | TC_{v} | typ. | -0.6 mV / K | | Temperature coefficient of wavelength | TC_{λ} | typ. | 0.3 nm / K | | Thermal resistance junction ambient real | R_{thJA} | max. | 500 K / W | | Thermal resistance junction case real | R_{thJC} | max. | 350 K / W | ### **Brightness Groups** $T_A = 25 \, ^{\circ}C$ | Group | Radiant intensity $I_F = 100 \text{ mA}$; $t_p = 20 \text{ ms}$ min. I_e | Radiant intensity $I_F = 100 \text{ mA}$; $t_p = 20 \text{ ms}$ max. I_e | |-------|---|---| | Q | 6.3 mW/sr | 12.5 mW/sr | | R | 10.0 mW/sr | 20.0 mW/sr | | S | 16.0 mW/sr | 32.0 mW/sr | An aperture is used in front of the component for measurement of the radiant intensity and the half angle (diameter of the aperture: 2.0 mm; distance of aperture to case back side: 5.4 mm). This ensures that solely the radiation in axial direction emitting directly from the chip surface will be evaluated during measurement of the radiant intensity. Radiation reflected by the bottom plate (stray radiation) will not be evaluated. These reflections impair the projection of the chip surface by additional optics (e.g. long-range light refelction switches). In respect of the application of the component, these reflections are generally suppressed by apertures as well. This measuring procedure corresponding with the application provides more useful values. This aperture measurement is denoted by "E 7800" added to the type designation. Only one group in one packing unit (variation lower 2:1). ### Relative Spectral Emission 4), 5) $$I_{rel} = f(\lambda); I_{r} = 100 \text{ mA}; t_{r} = 20 \text{ ms}$$ ## Radiation Characteristics 4), 5) ### Forward current 4), 5) $I_F = f(V_F)$; single pulse; $t_p = 100 \mu s$ # Relative Radiant Intensity 4), 5) $I_e/I_e(100 mA) = f(I_F)$; single pulse; $t_p = 100 \mu s$ ### Max. Permissible Forward Current $$I_{F,max} = f(T_A); R_{thJA} = 500 K/W$$ ## **Permissible Pulse Handling Capability** $I_F = f(t_D)$; duty cycle D = parameter; $T_A = 25$ °C # **Permissible Pulse Handling Capability** $I_F = f(t_p)$; duty cycle D = parameter; $T_A = 85$ °C # **Dimensional Drawing** 6) **Approximate Weight:** 330.0 mg | Pin | Description | |-----|-------------| | 1 | Cathode | | 2 | Anode | # Recommended Solder Pad 6) E062.3010.188-01 Pad 1: cathode # **TTW Soldering** IEC-61760-1 TTW #### **Notes** The evaluation of eye safety occurs according to the standard IEC 62471:2006 (photo biological safety of lamps and lamp systems). Within the risk grouping system of this IEC standard, the LED specified in this data sheet fall into the class exempt group (exposure time 10000 s). Under real circumstances (for exposure time, conditions of the eye pupils, observation distance), it is assumed that no endangerment to the eye exists from these devices. As a matter of principle, however, it should be mentioned that intense light sources have a high secondary exposure potential due to their blinding effect. When looking at bright light sources (e.g. headlights), temporary reduction in visual acuity and afterimages can occur, leading to irritation, annoyance, visual impairment, and even accidents, depending on the situation. For further application related informations please visit www.osram-os.com/appnotes #### **Disclaimer** #### Disclaimer Language english will prevail in case of any discrepancies or deviations between the two language wordings. #### Attention please! The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization. If printed or downloaded, please find the latest version in the OSRAM OS Webside. #### Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. #### Product safety devices/applications or medical devices/applications OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices. In case Buyer - or Customer supplied by Buyer- considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyze and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer. ### **Glossary** - Radiant intensity: Measured at a solid angle of $\Omega = 0.01 \text{ sr}$ - Reverse Operation: Reverse Operation of 10 hours is permissible in total. Continuous reverse operation is not allowed. - Total radiant flux: Measured with integrating sphere. - Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice. - Testing temperature: $T_{\Delta} = 25^{\circ}C$ - Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm. Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved. 此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。