TLV5614 2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

- Four 12-Bit D/A Converters
- Programmable Settling Time of Either 3 μs or 9 μs Typ
- TMS320, (Q)SPI[™], and Microwire[™] Compatible Serial Interface
- Internal Power-On Reset
- Low Power Consumption: 8 mW, Slow Mode – 5-V Supply 3.6 mW, Slow Mode – 3-V Supply
- Reference Input Buffer
- Voltage Output Range . . . 2× the Reference Input Voltage
- Monotonic Over Temperature

description

The TLV5614 is a quadruple 12-bit voltage output digital-to-analog converter (DAC) with a flexible 4-wire serial interface. The 4-wire serial interface allows glueless interface to TMS320, SPI, QSPI, and Microwire serial ports. The TLV5614 is programmed with a 16-bit serial word comprised of a DAC address, individual DAC control bits, and a 12-bit DAC value. The device has provision for two supplies: one digital supply for the serial interface (via pins DV_{DD} and DGND), and one for

- Dual 2.7-V to 5.5-V Supply (Separate Digital and Analog Supplies)
- Hardware Power Down (10 nA)
- Software Power Down (10 nA)
- Simultaneous Update

applications

- Battery Powered Test Instruments
- Digital Offset and Gain Adjustment
- Industrial Process Controls
- Machine and Motion Control Devices
- Communications
- Arbitrary Waveform Generation

the DACs, reference buffers, and output buffers (via pins AV_{DD} and AGND). Each supply is independent of the other, and can be any value between 2.7 V and 5.5 V. The dual supplies allow a typical application where the DAC is controlled via a microprocessor operating on a 3 V supply (also used on pins DV_{DD} and DGND), with the DACs operating on a 5 V supply. Of course, the digital and analog supplies can be tied together.

The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB output stage to improve stability and reduce settling time. A rail-to-rail output stage and a power-down mode makes it ideal for single voltage, battery based applications. The settling time of the DAC is programmable to allow the designer to optimize speed versus power dissipation. The settling time is chosen by the control bits within the 16-bit serial input string. A high-impedance buffer is integrated on the REFINAB and REFINCD terminals to reduce the need for a low source impedance drive to the terminal. REFINAB and REFINCD allow DACs A and B to have a different reference voltage then DACs C and D.

The TLV5614 is implemented with a CMOS process and is available in a 16-terminal SOIC package. The TLV5614C is characterized for operation from 0° C to 70° C. The TLV5614I is characterized for operation from -40° C to 85° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TLV5614 2.7-V TO 5.5-V 12-BIT 3- μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B – SEPTEMBER 1998 – REVISED APRIL 2003

AVAILABLE OPTIONS										
	PACKAGE									
Τ _Α	SOIC (D)	TSSOP (PW)	WSP [†] (YE)							
0°C to 70°C	TLV5614CD	TLV5614CPW								
-40°C to 85°C	TLV5614ID	TLV5614IPW	TLV5614IYE							

[†] Wafer Scale Packaging, also called Bumped Dice. See Figure 17.

functional block diagram

TLV5614 2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

Terminal Functions

TERMIN	IAL		
NAME	NO.	1/0	DESCRIPTION
AGND	9		Analog ground
AVDD	16		Analog supply
CS	6	Ι	Chip select. This terminal is active low.
DGND	8		Digital ground
DIN	4	Ι	Serial data input
DVDD	1		Digital supply
FS	7	I	Frame sync input. The falling edge of the frame sync pulse indicates the start of a serial data frame shifted out to the TLV5614.
PD	2	I	Power down pin. Powers down all DACs (overriding their individual power down settings), and all output stages. This terminal is active low.
LDAC	3	I	Load DAC. When the LDAC signal is high, no DAC output updates occur when the input digital data is read into the serial interface. The DAC outputs are only updated when LDAC is low.
REFINAB	15	-	Voltage reference input for DACs A and B.
REFINCD	10	-	Voltage reference input for DACs C and D.
SCLK	5	-	Serial clock input
OUTA	14	0	DACA output
OUTB	13	0	DACB output
OUTC	12	0	DACC output
OUTD	11	0	DACD output

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, (DV _{DD} , AV _{DD} to GND)	
Supply voltage difference, (AV _{DD} to DV _{DD})	–2.8 V to 2.8 V
Digital input voltage range	–0.3 V to DV _{DD} + 0.3 V
Reference input voltage range	–0.3 V to AV _{DD} + 0.3 V
Operating free-air temperature range, T _A : TLV5614C	0°C to 70°C
TLV5614I	–40°C to 85°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TLV5614 2.7-V TO 5.5-V 12-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

recommended operating conditions

		MIN	NOM	MAX	UNIT
	5-V supply	4.5	5	5.5	V
$\begin{tabular}{ c c c c c } \hline MIN \\ Supply voltage, AV_{DD}, DV_{DD} & & & & & & & & & & & & & & & & & & $		2.7	3	3.3	V
Supply voltage, AVDD, DVDD 5- High-level digital input voltage, VIH D' Low-level digital input voltage, VIL D' Reference voltage, Vref to REFINAB, REFINCD terminal 5- Load resistance, RL 5- Load capacitance, CL 5- Serial clock rate, SCLK 5-	DV _{DD} = 2.7 V	2			
High-level digital input voltage, VIH	DV _{DD} = 5.5 V	2.4			V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V				
	DV _{DD} = 5.5 V			1	V
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V			
Low-level digital input voltage, V_{IL} $DV_{DD} = 5.5 V$ Reference voltage, V_{ref} to REFINAB, REFINCD terminal5-V supply, See Note 102.048 V_{DD} -1.Load resistance, RL3-V supply, See Note 101.024 V_{DD} -1.		V _{DD} -1.5	V		
Load resistance, RL		2	10		kΩ
Load capacitance, CL				100	pF
Serial clock rate, SCLK				20	MHz
	TLV5614C	0		70	
Operating tree-air temperature	TLV5614I	-40		85	Ű

NOTE 1: Voltages greater than AV_{DD}/2 cause output saturation for large DAC codes.

electrical characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted)

static DAC specifications

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Resolution			12			bits
	Integral nonlinearity (INL), end po	oint adjusted	See Note 2		±1.5	<u>±</u> 4	LSB
	Differential nonlinearity (DNL)		See Note 3		±0.5	±1	LSB
E _{ZS}	Zero scale error (offset error at z	ero scale)	See Note 4			±12	mV
	Zero scale error temperature coe	fficient	See Note 5		10	±12	ppm/°C
EG	Gain error		See Note 6			±0.6	% of FS voltage
	Gain error temperature coefficier	it	See Note 7		10	±12 ±0.6 %	ppm/°C
DODD	Devues events rejection retio	Zero scale			-80		dB
PSRR	Power supply rejection ratio	Full scale	See Notes 8 and 9	10 10 10 -80 -80		dB	

NOTES: 2. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors.

3. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.

4. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.

5. Zero-scale-error temperature coefficient is given by: $E_{ZS} TC = [E_{ZS} (T_{max}) - E_{ZS} (T_{min})]/V_{ref} \times 10^6/(T_{max} - T_{min})$. 6. Gain error is the deviation from the ideal output (2 V_{ref} - 1 LSB) with an output load of 10 kΩ excluding the effects of the zero-error.

7. Gain temperature coefficient is given by: $E_G TC = [E_G(T_{max}) - E_G(T_{min})]/V_{ref} \times 10^6/(T_{max} - T_{min})$.

8. Zero-scale-error rejection ratio (EZS-RR) is measured by varying the AV_D from 5 ± 0.5 V and 3 ± 0.3 V dc, and measuring the proportion of this signal imposed on the zero-code output voltage.

Full-scale rejection ratio (EG-RR) is measured by varying the AV_{DD} from 5 ± 0.5 V and 3 ± 0.3 V dc and measuring the proportion 9. of this signal imposed on the full-scale output voltage after subtracting the zero scale change.

electrical characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) (continued)

individual DAC output specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vo	Voltage output range	RL = 10 kΩ	0		AV _{DD} -0.4	V
	Output load regulation accuracy	R _L = 2 kΩ vs 10 kΩ		0.1	0.25	% of FS voltage

reference inputs (REFINAB, REFINCD)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
VI	Input voltage range	See Note 10		0		AV _{DD} -1.5	V
RI	Input resistance	10					MΩ
CI	Input capacitance				5		pF
	Reference feed through	REFIN = 1 V _{pp} at 1 kHz + 1.024 V dc (see Note 11)			-75		dB
			Slow		0.5		N 41 1-
Reference input bandwidth		REFIN = $0.2 \text{ v}_{pp} + 1.024 \text{ v}$ dc large signal	Fast		1		MHZ

NOTES: 10. Reference input voltages greater than $V_{DD}/2$ cause output saturation for large DAC codes.

11. Reference feedthrough is measured at the DAC output with an input code = 000 hex and a V_{ref} (REFINAB or REFINCD) input = $1.024 \text{ Vdc} + 1 \text{ V}_{pp}$ at 1 kHz.

digital inputs (DIN, CS, LDAC, PD)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Ι _{ΙΗ}	High-level digital input current	$V_I = V_{DD}$			±1	μΑ
١ _{IL}	Low-level digital input current	$V_{I} = 0 V$			±1	μA
CI	Input capacitance			3		pF

power supply

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		5-V supply,	Slow		1.6	2.4	
I _{DD}	Power supply current	All inputs 0 V or V _{DD}	Fast		3.8	5.6	MA
		3-V supply,	Slow		1.2	1.8	
		All inputs 0 V or DV _{DD}			3.2	4.8	mA
	Power down supply current (see Figure 12)				10		nA

TLV5614 2.7-V TO 5.5-V 12-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS188B – SEPTEMBER 1998 – REVISED APRIL 2003

electrical characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) (continued)

analog output dynamic performance

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
		$C_{L} = 100 \text{ pF}, R_{L} = 10 \text{ k}\Omega,$	Fast		5		V/µs
SR	Output slew rate	$V_0 = 10\%$ to 90%, $V_{ref} = 2.048$ V, 1024 V	Slow		1		V/µs
	Output settling time To ± 0.5 LSB, C _L = 100 pF, Fast		Fast		3	5.5	_
τ _S	Output setting time	$R_L = 10 k\Omega$, See Notes 12 and 14	Slow		9	20	μs
4		To ± 0.5 LSB, C _L = 100 pF,	Fast		1		
^t s(c)	Output settling time, code to code	$R_L = 10 k\Omega$, See Note 13	Slow		2		μs
	Glitch energy	Code transition from 7FF to 800			10		nV-sec
SNR	Signal-to-noise ratio	Sinewave generated by DAC,	040 4514		74		
S/(N+D)	Signal to noise + distortion	Reference voltage = 1.024 at 3 V and 2. $f_s = 400$ KSPS,		66		.15	
THD	Total harmonic distortion	$f_{OUT} = 1.1 \text{ kHz sinewave},$		-68		αB	
SFDR	Spurious free dynamic range	BW = 20 kHz			70		

NOTES: 12. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of FFF hex to 080 hex for 080 hex to FFF hex.

13. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of one count.

14. Limits are ensured by design and characterization, but are not production tested.

TLV5614 2.7-V TO 5.5-V 12-BIT 3-μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS188B – SEPTEMBER 1998 – REVISED APRIL 2003

electrical characteristics over recommended operating free-air temperature range, supply voltages, and reference voltages (unless otherwise noted) (continued)

digital input timing requirements

		MIN	NOM	MAX	UNIT
^t su(CS–FS)	Setup time, $\overline{\text{CS}}$ low before FS \downarrow	10			ns
^t su(FS–CK)	Setup time, FS low before first negative SCLK edge	8			ns
^t su(C16–FS)	Setup time, sixteenth negative SCLK edge after FS low on which bit D0 is sampled before rising edge of FS	10			ns
^t su(C16–CS)	Setup time. The first positive SCLK edge after D0 is sampled before \overline{CS} rising edge. If FS is used instead of the SCLK positive edge to update the DAC, then the setup time is between the FS rising edge and \overline{CS} rising edge.	10			ns
t _{wH}	Pulse duration, SCLK high	25			ns
t _{wL}	Pulse duration, SCLK low	25			ns
^t su(D)	Setup time, data ready before SCLK falling edge	8			ns
^t h(D)	Hold time, data held valid after SCLK falling edge	5			ns
^t wH(FS)	Pulse duration, FS high	20			ns

TLV5614 2.7-V TO 5.5-V 12-BIT 3- μ S QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

TLV5614 2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

Figure 14

general function

The TLV5614 is a 12-bit single supply DAC based on a resistor string architecture. The device consists of a serial interface, speed and power down control logic, a reference input buffer, a resistor string, and a rail-to-rail output buffer.

The output voltage (full scale determined by external reference) is given by:

$$2 \text{ REF } \frac{\text{CODE}}{2^n} [V]$$

where REF is the reference voltage and CODE is the digital input value within the range of 0_{10} to $2^{n}-1$, where n=12 (bits). The 16-bit data word, consisting of control bits and the new DAC value, is illustrated in the *data format* section. A power-on reset initially resets the internal latches to a defined state (all bits zero).

serial interface

Explanation of data transfer: First, the device has to be enabled with \overline{CS} set to low. Then, a falling edge of FS starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred or FS rises, the content of the shift register is moved to the DAC latch which updates the voltage output to the new level.

The serial interface of the TLV5614 can be used in two basic modes:

- Four wire (with chip select)
- Three wire (without chip select)

Using chip select (four wire mode), it is possible to have more than one device connected to the serial port of the data source (DSP or microcontroller). The interface is compatible with the TMS320[™] DSP family. Figure 15 shows an example with two TLV5614s connected directly to a TMS320 DSP.

Figure 15. TMS320 Interface

TMS320 is a trademark of Texas Instruments.

serial interface (continued)

If there is no need to have more than one device on the serial bus, then \overline{CS} can be tied low. Figure 16 shows an example of how to connect the TLV5614 to a TMS320, SPI, or Microwire port using only three pins.

Figure 16. Three-Wire Interface

Notes on SPI and Microwire: Before the controller starts the data transfer, the software has to generate a falling edge on the I/O pin connected to FS. If the word width is 8 bits (SPI and Microwire), two write operations must be performed to program the TLV5614. After the write operation(s), the DAC output is updated automatically on the next positive clock edge following the sixteenth falling clock edge.

serial clock frequency and update rate

The maximum serial clock frequency is given by:

$$f_{SCLKmax} = \frac{1}{t_{wH(min)} + t_{wL(min)}} = 20 \text{ MHz}$$

The maximum update rate is:

$$f_{UPDATEmax} = \frac{1}{16 \left(t_{wH(min)} + t_{wL(min)} \right)} = 1.25 \text{ MHz}$$

Note that the maximum update rate is a theoretical value for the serial interface since the settling time of the TLV5614 has to be considered also.

data format

The 16-bit data word for the TLV5614 consists of two parts:

Control bits (D15...D12)

(D11...D0) New DAC value

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
A1	A0	PWR	SPD		New DAC value (12 bits)										

X: don't care	
---------------	--

SPD: Speed control bit.	$1 \rightarrow fast mode$
PWR: Power control bit.	$1 \rightarrow power down$

```
0 \rightarrow \text{slow mode}
0 \rightarrow normal operation
```


In power-down mode, all amplifiers within the TLV5614 are disabled. A particular DAC (A, B, C, D) of the TLV5614 is selected by A1 and A0 within the input word.

A1	A0	DAC
0	0	A
0	1	В
1	0	С
1	1	D

Using TLV5614IYE, Bumped Dice

- Melting point of eutectic solder is 183°C.
- Recommended peak reflow temperatures are in the 220°C to 230°C range.
- The use of underfill is required. The use of underfill greatly reduces the risk of thermal mismatch fails.

Underfill is an epoxy/adhesive that may be added during the board assembly process to improve board level/system level reliability. The process is to dispense the epoxy under the dice after die attach reflow. The epoxy adheres to the body of the device and to the printed-circuit board. It reduces stress placed upon the solder joints due to the thermal coefficient of expansion (TCE) mismatch between the board and the component. Underfill material is highly filled with silica or other fillers to increase an epoxy's modulus, reduce creep sensitivity, and decrease the material's TCE.

The recommendation for peak flow temperatures of 220°C to 230°C is based on general empirical results that indicate that this temperature range is needed to facilitate good wetting of the solder bump to the substrate or circuit board pad. Lower peak temperatures may cause nonwets (cold solder joints).

NOTE A: All linear dimensions are in millimeters.

NOTE B: This drawing is subject to change without notice.

NOTE C: Scale = 18x

TLV5614 interfaced to TMS320C203 DSP

hardware interfacing

Figure 17 shows an example of how to connect the TLV5614 to a TMS320C203 DSP. The serial port is configured in burst mode, with FSX generated by the TMS320C203 to provide the frame sync (FS) input to the TLV5614. Data is transmitted on the DX line, with the serial clock input on the CLKX line. The general-purpose input/output port bits IO0 and IO1 are used to generate the chip select (CS) and DAC latch update (LDAC) inputs to the TLV5614. The active low power down (PD) is pulled high all the time to ensure the DACs are enabled.

Figure 18. TLV5614 Interfaced With TMS320C203

software

The application example outputs a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and its quadrature (cosine) signal as the differential signal between VOUTC and VOUTD.

The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses $\overline{\text{LDAC}}$ low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The samples are stored in a look-up table, which describes two full periods of a sine wave.

The synchronous serial port of the DSP is used in burst mode. In this mode, the processor generates an FS pulse preceding the MSB of every data word. If multiple, contiguous words are transmitted, a violation of the tsu(C16–FS) timing requirement occurs. To avoid this, the program waits until the transmission of the previous word has been completed.

TLV5614 2.7-V TO 5.5-V 12-BIT 3- μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

APPLICATION INFORMATION

;_____ _____ ; Processor: TMS320C203 runnning at 40 MHz ; Description: ; This program generates a differential in-phase (sine) on (OUTA-OUTB) and it's ; quadrature (cosine) as a differential signal on (OUTC-OUTD). ; The DAC codes for the signal samples are stored as a table of 64 12-bit values, ; describing 2 periods of a sine function. A rolling pointer is used to address the ; table location in the first period of this waveform, from which the DAC A samples ; are read. The samples for the other 3 DACs are read at an offset to this rolling ; pointer: Offset from rolling pointer DAC Function 0 А sine ; inverse sine 16 ; B С cosine 8 ; inverse cosine24 D : ; The on-chip timer is used to generate interrupts at a fixed rate. The interrupt ; service routine first pulses LDAC low to update all DACs simultaneously ; with the values which were written to them in the previous interrupt. Then all ; 4 DAC values are fetched and written out through the synchronous serial interface ; Finally, the rolling pointer is incremented to address the next sample, ready for ; the next interrupt. ; © 1998, Texas Instruments Inc. ; _ _ -_____ ;-----I/O and memory mapped regs -----.include "regs.asm" ;-----jump vectors -----.ps Oh b start b int1 int23 timer_isr; b b ------ variables -----temp .equ 0060h r_ptr .equ 0061h equ 0061h iosr_stat .equ 0062h DACa_ptr .equ 0063h DACb_ptr .equ 0064h .equ 0065h .equ 0066h DACc_ptr DACd_ptr ;-----constants------; DAC control bits to be OR'ed onto data ; all fast mode DACa_control .equ 01000h DACb_control .equ 05000h DACc_control .equ 09000h DACd_control .equ 0d000h ;----- tables ------02000h .ds sinevals .word 00800h .word 0097Ch .word 00AE9h .word 00C3Ah .word 00D61h .word 00E53h .word 00F07h .word 00F76h .word 00F9Ch .word 00F76h .word 00F07h .word 00E53h

.word	00D61h
.word	00C3Ah
.word	00AE9h
word	0097Ch
word	00800h
word	00684h
.word	00517b
.word	0031711
.word	003001
.word	0029F11
.word	OUIADh
.word	000F9h
.word	0008Ah
.word	00064h
.word	0008Ah
.word	000F9h
.word	001ADh
.word	0029Fh
.word	003C6h
word	00517h
word	00684h
word	00800h
.word	00000000000000000000000000000000000000
.word	0097CH
.word	00AE9II
.word	00C3An
.word	00D61h
.word	00E53h
.word	00F07h
.word	00F76h
.word	00F9Ch
.word	00F76h
.word	00F07h
.word	00E53h
.word	00D61h
word	00C3Ah
word	00AE9h
word	0001110011 0097Ch
.word	009701
.word	0060011
.word	0000411
.word	0051711
.wora	003066
.word	0029Fh
.word	001ADh
.word	000F9h
.word	0008Ah
.word	00064h
.word	0008Ah
.word	000F9h
.word	001ADh
word	0029Fh
word	003C6b
word	00517b
.word	0062171
.word	0000411

TLV5614 2.7-V TO 5.5-V 12-BIT 3- μS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

APPLICATION INFORMATION

;_____ ; Main Program ;-----.ps 1000h .entry start ;-; disable interrupts ; -; disable maskable interrupts INTM setc splk #0ffffh, IFR; clear all interrupts splk #0004h, IMR; timer interrupts unmasked _____ ; set up the timer ; timer period set by values in PRD and TDDR ; period = (CLKOUT1 period) x (1+PRD) x (1+TDDR) examples for TMS320C203 with 40MHz main clock ; Timer rate TDDR PRD ; 80 kHz 9 24 (18h) ; 50 kHz 9 39 (27h) ;-----prd_val.equ 0018h tcr_val.equ 0029h tcr_val.equ 0029h splk #0000h, temp; clear timer splk #prd_val, temp; set PRD out temp, PRD splk #tcr_val, temp; set TDDR, and TRB=1 for auto-reload out temp, TCR ; ---; Configure IO0/1 as outputs to be : ; IOO CS - and set high ; IO1 LDAC - and set high ;----_____ _____ temp, ASPCR; configure as output in lacl temp #0003h or sacl temp out temp, ASPCR temp, IOSR; set them high in lacl temp #0003h or sacl temp out temp, IOSR _____ ;-----_____ ; set up serial port for ; SSPCR.TXM=1 Transmit mode - generate FSX ; SSPCR.MCM=1 Clock mode - internal clock source ; SSPCR.FSM=1 Burst mode ;-splk #0000Eh, temp temp, SSPCR; reset transmitter out splk #0002Eh, temp out temp,SSPCR ;-; reset the rolling pointer _____ lacl #000h sacl r_ptr ; ---; enable interrupts _____ _____ ; clrc INTM ; enable maskable interrupts ;_____ _____ ; loop forever!

TLV5614 2.7-V TO 5.5-V 12-BIT 3-µS QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN SLAS188B – SEPTEMBER 1998 – REVISED APRIL 2003

APPLICATION INFORMATION

next	idle b	next	;wait	for interrupt
;; all	else	fails stop	here	
done	b	done	;hang	there
;; Inte	errup	t Service Ro	outines	
int1 int23 timer_	ret ret _isr:	; do : ; do :	nothing nothing	and return and return
in lad sac out or sac out and sac add sac add sac add sac add sac	cl d cl t t d cl cl cl cl cl cl cl cl cl cl cl cl cl	iosr_stat, I iosr_stat #OFFFDh temp, IOSR #0002h temp temp, IOSR #0FFFEh temp, IOSR r_ptr #sinevals DACa_ptr #08h DACc_ptr #08h DACb_ptr #08h DACd_ptr	OSR; st ; load ; rese ; ; set ; ; rese ; rese ; add ; load ; add ; add ; add	<pre>core IOSR value into variable space d acc with iosr status et IO1 - LDAC low IO1 - LDAC high et IO0 - CS low d rolling pointer to accumulator pointer to table start get a pointer for next DAC a sample 8 to get to DAC C pointer 8 to get to DAC B pointer 8 to get to DAC B pointer</pre>
mai ; l la: lac or sac out ;	r DAC A r cl cl t	*,aru ar0, DACa_pt * #DACa_contro temp temp, SDTR	; set ; ar0 ; get ol; OR : ; send ; send	aru as current AR points to DAC a sample DAC a sample into accumulator in DAC A control bits d data
TLV561 we nee compat	4/04 d a ibil	interface d CLKX -ve edg ity.	loes not ge to cl	allow the use of burst mode with the full packet; rate, as ock in last bit before FS goes high again,; to allow SPI
, rpt noj	t p	#016h	; wait ; of N	t long enough for this configuration MCLK/CLKOUT1 rate
; l la: lac or sac out rpt nop	DAC B r cl cl t t	ar0, dacb_pt * #DACb_contro temp temp, SDTR #016h	r; ar0 ; get]; OR : ; send ; wait ; of N	points to DAC a sample DAC a sample into accumulator in DAC B control bits d data t long enough for this configuration MCLK/CLKOUT1 rate
; DAC la: lac or sac out rpt nop	C cl cl t t	ar0, dacc_pt * #DACc_contro temp temp, SDT #016h	r; ar0 ; get ol; OR : ; TR; send ; wait ; of N	points to dac a sample DAC a sample into accumulator in DAC C control bits d data t long enough for this configuration MCLK/CLKOUT1 rate

TLV5614 2.7-V TO 5.5-V 12-BIT 3- μ S QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

APPLICATION INFORMATION

; DA	AC D lar lacl or sacl out	ar0, dacd_ * #dacd_control temp temp, SDTR	pt ; ; ;	cr; ar0 points to DAC a sample get DAC a sample into accumulator OR in DAC D control bits send data
- - - - - - - - - - - - - - - - - - -	lacl add and sacl rpt nop	r_ptr #1h #001Fh r_ptr #016h	;;;;;;;	<pre>load rolling pointer to accumulator increment rolling pointer count 0-31 then wrap back round store rolling pointer wait long enough for this configuration of MCLK/CLKOUT1 rate</pre>
; no	ow take lacl or sacl out	e CS high again iosr_stat #0001h temp temp, IOSR	n ;;;;;	load acc with iosr status set IOO - CS high
.end	ret l	Incm	;	return from interrupt

TLV5614 interfaced to MCS®51 microcontroller

hardware interfacing

Figure 18 shows an example of how to connect the TLV5614 to an MCS[®]51 Microcontroller. The serial DAC input data and external control signals are sent via I/O Port 3 of the controller. The serial data is sent on the RxD line, with the serial clock output on the TxD line. Port 3 bits 3, 4, and 5 are configured as outputs to provide the DAC latch update (LDAC), chip select (\overline{CS}) and frame sync (FS) signals for the TLV5614. The active low power down pin (\overline{PD}) of the TLV5614 is pulled high to ensure that the DACs are enabled.

Figure 19. TLV5614 Interfaced With MCS[®]51

software

The example is the same as for the TMS320C203 in this data sheet, but adapted for a MCS[®]51 controller. It generates a differential in-phase (sine) signal between the VOUTA and VOUTB pins, and its quadrature (cosine) signal is the differential signal between VOUTC and VOUTD.

The on-chip timer is used to generate interrupts at a fixed frequency. The related interrupt service routine pulses $\overline{\text{LDAC}}$ low to update all 4 DACs simultaneously, then fetches and writes the next sample to all 4 DACs. The samples are stored as a look-up table, which describes one full period of a sine wave.

The serial port of the controller is used in Mode 0, which transmits 8 bits of data on RxD, accompanied by a synchronous clock on TxD. Two writes concatenated together are required to write a complete word to the TLV5614. The \overline{CS} and FS signals are provided in the required fashion through control of IO port 3, which has bit addressable outputs.

TLV5614 2.7-V TO 5.5-V 12-BIT 3- μ S QUADRUPLE DIGITAL-TO-ANALOG CONVERTERS WITH POWER DOWN

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

APPLICATION INFORMATION

_____ ;-----; Processor: 80C51 ; Description: ; This program generates a differential in-phase (sine) on (OUTA-OUTB) ; and it's quadrature (cosine) as a differential signal on (OUTC-OUTD). ; © 1998, Texas Instruments Inc. ;_____ ------_____ NAME GENIQ MAIN SEGMENT CODE ISR SEGMENT CODE SINTBL SEGMENT CODE VAR1 SEGMENT STACK SEGMENT DATA IDATA ;-----_____ ; Code start at address 0, jump to start ; ----_____ CSEG AT 0 LJMP start ; Execution starts at address 0 on power-up. ;______ ; Code in the timer0 interrupt vector ;------_____ CSEG AT OBH ; Jump vector for timer 0 interrupt is 000Bh LJMP timer0isr -; _ _ _ _ _____ _____ ; Global variables need space allocated VAR1 RSEG temp_ptr: DS 1 rolling_ptr: DS 1 -------Interrupt service routine for timer 0 interrupts ;-----_____ RSEG ISR timer0isr: PUSH PSW PUSH ACC ; pulse LDAC low CLR TNT1 SETB ; to latch all 4 previous values at the same time INT1 ; 1st thing done in timer isr => fixed period CLR ΤO ; set CS low ; The signal to be output on each DAC is a sine function. ; One cycle of a sine wave is held in a table @ sinevals ; as 32 samples of msb, 1sb pairs (64 bytes). ; We have ; one pointer which rolls round this table, rolling_ptr, ; incrementing by 2 bytes (1 sample) on each interrupt (at the end of ; this routine). The DAC samples are read at an offset to this rolling pointer: ; ; DAC Function Offset from rolling_ptr А sine 0 ; ; B inverse sine 32 С ; cosine 16 inverse cosine48 ; D MOV DPTR, #sinevals; set DPTR to the start of the table ; of sine signal values R7,rolling_ptr; R7 holds the pointer MOV ; into the sine table MOV A,R7 ; get DAC A msb ; msb of DAC A is in the ACC MOVC A,@A+DPTR

CLR MOV	T1 SBUF,A	; ;	transmit it - set FS low send it out the serial port
INC MOV MOVC	R7 A,R7 A,@A+DPTR	;;;	increment the pointer in R7 to get the next byte from the table which is the lsb of this sample, now in ACC
A_MSE JNB CLR MOV	TI,A_MSB_TX TI SBUF,A	; ; ;	wait for transmit to complete clear for new transmit and send out the lsb of DAC A
; DAC ; DAC ; in MOV ADD ANL MOV	C next C codes shoul the sine table A,R7 A,#0FH A,#03FH R7,A	d 1 ; ; ;	be taken from 16 bytes (8 samples) further on this gives a cosine function pointer in R7 add 15 - already done one INC wrap back round to 0 if > 64 pointer back in R7
MOVC ORL	A,@A+DPTR A,#01H	; ;	get DAC C msb from the table set control bits to DAC C address
A_LSB_TX JNB SETB	TI,A_LSB_TX T1	; ;	wait for DAC A lsb transmit to complete toggle FS
CLR T CLR MOV INC MOV MOVC	I TI SBUF,A R7 A,R7 A,@A+DPTR	;;;;;	clear for new transmit and send out the msb of DAC C increment the pointer in R7 to get the next byte from the table which is the lsb of this sample, now in ACC
JNB CLR MOV	TI,C_MSB_TX TI SBUF,A	; ; ;	wait for transmit to complete clear for new transmit and send out the lsb of DAC C
; DAC ; DAC ; in MOV ADD ANL MOV	2 B next 2 B codes shoul the sine table A,R7 A,#0FH A,#03FH R7,A	d] ; ; ;	be taken from 16 bytes (8 samples) further on this gives an inverted sine function pointer in R7 add 15 - already done one INC wrap back round to 0 if > 64 pointer back in R7
MOVC ORL	A,@A+DPTR A,#02H	; ;	get DAC B msb from the table set control bits to DAC B address
C_LSB_TX JNB SETB CLR CLR MOV	: TI,C_LSB_TX T1 T1 TI SBUF D	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	wait for DAC C lsb transmit to complete toggle FS clear for new transmit and send out the msb of DAC B
; get INC MOV MOVC	DAC B LSB R7 A,R7 A,@A+DPTR	;;;	increment the pointer in R7 to get the next byte from the table which is the lsb of this sample, now in ACC
B_MSB_TX JNB CLR MOV	: TI,B_MSB_TX TI SBUF,A	;;;	wait for transmit to complete clear for new transmit and send out the lsb of DAC B
; DAC ; DAC ; in	D next D codes shoul the sine table	d]	be taken from 16 bytes (8 samples) further on this gives an inverted cosine function

SLAS188B - SEPTEMBER 1998 - REVISED APRIL 2003

APPLICATION INFORMATION

MOV A,R7 ; pointer in R7 A,#0FH ADD ; add 15 - already done one INC A, #03FH; wrap back round to 0 if > 64 ANL R7,A ; pointer back in R7 A,@A+DPTR ; get DAC D msb from the table R7,A MOV MOVC ; set control bits to DAC D address A,#03H ORL B LSB TX: JNB TI,B_LSB_TX ; wait for DAC B lsb transmit to complete SETB т1 ; toggle FS т1 CLR CLR TI ; clear for new transmit MOV SBUF, A ; and send out the msb of DAC D TNC R7 ; increment the pointer in R7 R7, increment the pointer in R7A,R7; to get the next byte from the tableA,@A+DPTR; which is the lsb of this sample, now in ACC MOV MOVC D_MSB_TX: JNB TI,D_MSB_TX ; wait for transmit to complete ; clear for new transmit CLR ΤT MOV SBUF,A ; and send out the lsb of DAC D ; increment the rolling pointer to point to the next sample ; ready for the next interrupt A,rolling_ptr MOV ; add 2 to the rolling pointer ; wrap back round to 0 if > 64 A,#02H ADD ANL A,#03FH rolling_ptr,A; store in memory again MOV D_LSB_TX: JNB TI,D_LSB_TX ; wait for DAC D lsb transmit to complete ; clear for next transmit CLR ΤI ; FS high SETB т1 т0 ; CS high SETB POP ACC POP PSW RETI ;------; Stack needs definition RSEG STACK DS 10h ; 16 Byte Stack! ;------; Main program code ; -RSEG MAIN start: MOV SP,#STACK-1 ; first set Stack Pointer CLR A SCON,A ; set serial port 0 to mode 0 TMOD,#02H ; set timer 0 to mode 2 - auto-reload TH0,#038H ; set TH0 for 5kHs interrupts MOV MOV MOV ; set LDAC = 1 ; set FS = 1 INT1 SETB SETB т1 ; set CS = 1 SETB т0 ; enable timer 0 interrupts ; enable all interrupts SETB ETO SETB ΕA MOV rolling_ptr,A; set rolling pointer to 0 SETB TR0 ; start timer 0 always: SJMP always ; while(1) ! RET ;_____ _____ ; Table of 32 sine wave samples used as DAC data ;-RSEG SINTBL

sineva	ls:
DW	01000H
DW	0903EH
DW	05097H
DW	0305CH
DW	0B086H
DW	070CAH
DW	OFOEOH
DW	OFOGEH
DW	0F039H
DW	OFOGEH
DW	OFOEOH
DW	070CAH
DW	0B086H
DW	0305CH
DW	05097H
DW	0903EH
DW	01000H
DW	06021H
DW	0A0E8H
DW	0C063H
DW	040F9H
DW	080B5H
DW	0009FH
DW	00051H
DW	00026H
DW	00051H
DW	0009FH
DW	080B5H
DW	040F9H
DW	0C063H
DW	0A0E8H
DW	06021H
END	

EXAS INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(0)	(4)	(5)		(0)
TLV5614CD	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV5614C
TLV5614CD.A	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV5614C
TLV5614CPW	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5614
TLV5614CPW.A	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5614
TLV5614CPWG4	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5614
TLV5614CPWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5614
TLV5614CPWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	TV5614
TLV5614ID	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLV5614I
TLV5614ID.A	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLV5614I
TLV5614IDR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLV5614I
TLV5614IDR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TLV5614I
TLV5614IPW	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY5614
TLV5614IPW.A	Active	Production	TSSOP (PW) 16	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY5614
TLV5614IPWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY5614
TLV5614IPWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TY5614

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

(2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

(4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

www.ti.com

30-Jun-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV5614 :

Enhanced Product : TLV5614-EP

NOTE: Qualified Version Definitions:

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV5614CPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TLV5614IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TLV5614IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-May-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV5614CPWR	TSSOP	PW	16	2000	350.0	350.0	43.0
TLV5614IDR	SOIC	D	16	2500	350.0	350.0	43.0
TLV5614IPWR	TSSOP	PW	16	2000	350.0	350.0	43.0

TEXAS INSTRUMENTS

www.ti.com

23-May-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
TLV5614CD	D	SOIC	16	40	505.46	6.76	3810	4
TLV5614CD.A	D	SOIC	16	40	505.46	6.76	3810	4
TLV5614CPW	PW	TSSOP	16	90	530	10.2	3600	3.5
TLV5614CPW.A	PW	TSSOP	16	90	530	10.2	3600	3.5
TLV5614CPWG4	PW	TSSOP	16	90	530	10.2	3600	3.5
TLV5614ID	D	SOIC	16	40	505.46	6.76	3810	4
TLV5614ID.A	D	SOIC	16	40	505.46	6.76	3810	4
TLV5614IPW	PW	TSSOP	16	90	530	10.2	3600	3.5
TLV5614IPW.A	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

PW0016A

PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

PW0016A

EXAMPLE BOARD LAYOUT

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated